Metamath Proof Explorer


Theorem psrbagres

Description: Restrict a bag of variables in I to a bag of variables in J C_ I . (Contributed by SN, 10-Mar-2025)

Ref Expression
Hypotheses psrbagres.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
psrbagres.e 𝐸 = { 𝑔 ∈ ( ℕ0m 𝐽 ) ∣ ( 𝑔 “ ℕ ) ∈ Fin }
psrbagres.i ( 𝜑𝐼𝑉 )
psrbagres.j ( 𝜑𝐽𝐼 )
psrbagres.f ( 𝜑𝐹𝐷 )
Assertion psrbagres ( 𝜑 → ( 𝐹𝐽 ) ∈ 𝐸 )

Proof

Step Hyp Ref Expression
1 psrbagres.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
2 psrbagres.e 𝐸 = { 𝑔 ∈ ( ℕ0m 𝐽 ) ∣ ( 𝑔 “ ℕ ) ∈ Fin }
3 psrbagres.i ( 𝜑𝐼𝑉 )
4 psrbagres.j ( 𝜑𝐽𝐼 )
5 psrbagres.f ( 𝜑𝐹𝐷 )
6 1 psrbagf ( 𝐹𝐷𝐹 : 𝐼 ⟶ ℕ0 )
7 5 6 syl ( 𝜑𝐹 : 𝐼 ⟶ ℕ0 )
8 7 4 fssresd ( 𝜑 → ( 𝐹𝐽 ) : 𝐽 ⟶ ℕ0 )
9 1 psrbagfsupp ( 𝐹𝐷𝐹 finSupp 0 )
10 5 9 syl ( 𝜑𝐹 finSupp 0 )
11 0zd ( 𝜑 → 0 ∈ ℤ )
12 10 11 fsuppres ( 𝜑 → ( 𝐹𝐽 ) finSupp 0 )
13 5 resexd ( 𝜑 → ( 𝐹𝐽 ) ∈ V )
14 fcdmnn0fsuppg ( ( ( 𝐹𝐽 ) ∈ V ∧ ( 𝐹𝐽 ) : 𝐽 ⟶ ℕ0 ) → ( ( 𝐹𝐽 ) finSupp 0 ↔ ( ( 𝐹𝐽 ) “ ℕ ) ∈ Fin ) )
15 13 8 14 syl2anc ( 𝜑 → ( ( 𝐹𝐽 ) finSupp 0 ↔ ( ( 𝐹𝐽 ) “ ℕ ) ∈ Fin ) )
16 12 15 mpbid ( 𝜑 → ( ( 𝐹𝐽 ) “ ℕ ) ∈ Fin )
17 3 4 ssexd ( 𝜑𝐽 ∈ V )
18 2 psrbag ( 𝐽 ∈ V → ( ( 𝐹𝐽 ) ∈ 𝐸 ↔ ( ( 𝐹𝐽 ) : 𝐽 ⟶ ℕ0 ∧ ( ( 𝐹𝐽 ) “ ℕ ) ∈ Fin ) ) )
19 17 18 syl ( 𝜑 → ( ( 𝐹𝐽 ) ∈ 𝐸 ↔ ( ( 𝐹𝐽 ) : 𝐽 ⟶ ℕ0 ∧ ( ( 𝐹𝐽 ) “ ℕ ) ∈ Fin ) ) )
20 8 16 19 mpbir2and ( 𝜑 → ( 𝐹𝐽 ) ∈ 𝐸 )