Step |
Hyp |
Ref |
Expression |
1 |
|
psrbas.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
2 |
|
psrbas.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
3 |
|
psrbas.d |
⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
4 |
|
psrbas.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
5 |
|
psrbas.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
6 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
7 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
8 |
|
eqid |
⊢ ( TopOpen ‘ 𝑅 ) = ( TopOpen ‘ 𝑅 ) |
9 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( 𝐾 ↑m 𝐷 ) = ( 𝐾 ↑m 𝐷 ) ) |
10 |
|
eqid |
⊢ ( ∘f ( +g ‘ 𝑅 ) ↾ ( ( 𝐾 ↑m 𝐷 ) × ( 𝐾 ↑m 𝐷 ) ) ) = ( ∘f ( +g ‘ 𝑅 ) ↾ ( ( 𝐾 ↑m 𝐷 ) × ( 𝐾 ↑m 𝐷 ) ) ) |
11 |
|
eqid |
⊢ ( 𝑔 ∈ ( 𝐾 ↑m 𝐷 ) , ℎ ∈ ( 𝐾 ↑m 𝐷 ) ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑔 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ℎ ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) = ( 𝑔 ∈ ( 𝐾 ↑m 𝐷 ) , ℎ ∈ ( 𝐾 ↑m 𝐷 ) ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑔 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ℎ ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) |
12 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐾 , 𝑔 ∈ ( 𝐾 ↑m 𝐷 ) ↦ ( ( 𝐷 × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑔 ) ) = ( 𝑥 ∈ 𝐾 , 𝑔 ∈ ( 𝐾 ↑m 𝐷 ) ↦ ( ( 𝐷 × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑔 ) ) |
13 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) = ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) ) |
14 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → 𝐼 ∈ 𝑉 ) |
15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → 𝑅 ∈ V ) |
16 |
1 2 6 7 8 3 9 10 11 12 13 14 15
|
psrval |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → 𝑆 = ( { 〈 ( Base ‘ ndx ) , ( 𝐾 ↑m 𝐷 ) 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑅 ) ↾ ( ( 𝐾 ↑m 𝐷 ) × ( 𝐾 ↑m 𝐷 ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑔 ∈ ( 𝐾 ↑m 𝐷 ) , ℎ ∈ ( 𝐾 ↑m 𝐷 ) ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑔 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ℎ ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ 𝐾 , 𝑔 ∈ ( 𝐾 ↑m 𝐷 ) ↦ ( ( 𝐷 × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) ) |
17 |
16
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( Base ‘ 𝑆 ) = ( Base ‘ ( { 〈 ( Base ‘ ndx ) , ( 𝐾 ↑m 𝐷 ) 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑅 ) ↾ ( ( 𝐾 ↑m 𝐷 ) × ( 𝐾 ↑m 𝐷 ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑔 ∈ ( 𝐾 ↑m 𝐷 ) , ℎ ∈ ( 𝐾 ↑m 𝐷 ) ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑔 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ℎ ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ 𝐾 , 𝑔 ∈ ( 𝐾 ↑m 𝐷 ) ↦ ( ( 𝐷 × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) ) ) |
18 |
|
ovex |
⊢ ( 𝐾 ↑m 𝐷 ) ∈ V |
19 |
|
psrvalstr |
⊢ ( { 〈 ( Base ‘ ndx ) , ( 𝐾 ↑m 𝐷 ) 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑅 ) ↾ ( ( 𝐾 ↑m 𝐷 ) × ( 𝐾 ↑m 𝐷 ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑔 ∈ ( 𝐾 ↑m 𝐷 ) , ℎ ∈ ( 𝐾 ↑m 𝐷 ) ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑔 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ℎ ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ 𝐾 , 𝑔 ∈ ( 𝐾 ↑m 𝐷 ) ↦ ( ( 𝐷 × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) Struct 〈 1 , 9 〉 |
20 |
|
baseid |
⊢ Base = Slot ( Base ‘ ndx ) |
21 |
|
snsstp1 |
⊢ { 〈 ( Base ‘ ndx ) , ( 𝐾 ↑m 𝐷 ) 〉 } ⊆ { 〈 ( Base ‘ ndx ) , ( 𝐾 ↑m 𝐷 ) 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑅 ) ↾ ( ( 𝐾 ↑m 𝐷 ) × ( 𝐾 ↑m 𝐷 ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑔 ∈ ( 𝐾 ↑m 𝐷 ) , ℎ ∈ ( 𝐾 ↑m 𝐷 ) ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑔 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ℎ ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } |
22 |
|
ssun1 |
⊢ { 〈 ( Base ‘ ndx ) , ( 𝐾 ↑m 𝐷 ) 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑅 ) ↾ ( ( 𝐾 ↑m 𝐷 ) × ( 𝐾 ↑m 𝐷 ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑔 ∈ ( 𝐾 ↑m 𝐷 ) , ℎ ∈ ( 𝐾 ↑m 𝐷 ) ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑔 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ℎ ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ⊆ ( { 〈 ( Base ‘ ndx ) , ( 𝐾 ↑m 𝐷 ) 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑅 ) ↾ ( ( 𝐾 ↑m 𝐷 ) × ( 𝐾 ↑m 𝐷 ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑔 ∈ ( 𝐾 ↑m 𝐷 ) , ℎ ∈ ( 𝐾 ↑m 𝐷 ) ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑔 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ℎ ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ 𝐾 , 𝑔 ∈ ( 𝐾 ↑m 𝐷 ) ↦ ( ( 𝐷 × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) |
23 |
21 22
|
sstri |
⊢ { 〈 ( Base ‘ ndx ) , ( 𝐾 ↑m 𝐷 ) 〉 } ⊆ ( { 〈 ( Base ‘ ndx ) , ( 𝐾 ↑m 𝐷 ) 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑅 ) ↾ ( ( 𝐾 ↑m 𝐷 ) × ( 𝐾 ↑m 𝐷 ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑔 ∈ ( 𝐾 ↑m 𝐷 ) , ℎ ∈ ( 𝐾 ↑m 𝐷 ) ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑔 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ℎ ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ 𝐾 , 𝑔 ∈ ( 𝐾 ↑m 𝐷 ) ↦ ( ( 𝐷 × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) |
24 |
19 20 23
|
strfv |
⊢ ( ( 𝐾 ↑m 𝐷 ) ∈ V → ( 𝐾 ↑m 𝐷 ) = ( Base ‘ ( { 〈 ( Base ‘ ndx ) , ( 𝐾 ↑m 𝐷 ) 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑅 ) ↾ ( ( 𝐾 ↑m 𝐷 ) × ( 𝐾 ↑m 𝐷 ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑔 ∈ ( 𝐾 ↑m 𝐷 ) , ℎ ∈ ( 𝐾 ↑m 𝐷 ) ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑔 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ℎ ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ 𝐾 , 𝑔 ∈ ( 𝐾 ↑m 𝐷 ) ↦ ( ( 𝐷 × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) ) ) |
25 |
18 24
|
ax-mp |
⊢ ( 𝐾 ↑m 𝐷 ) = ( Base ‘ ( { 〈 ( Base ‘ ndx ) , ( 𝐾 ↑m 𝐷 ) 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑅 ) ↾ ( ( 𝐾 ↑m 𝐷 ) × ( 𝐾 ↑m 𝐷 ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑔 ∈ ( 𝐾 ↑m 𝐷 ) , ℎ ∈ ( 𝐾 ↑m 𝐷 ) ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑔 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ℎ ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ 𝐾 , 𝑔 ∈ ( 𝐾 ↑m 𝐷 ) ↦ ( ( 𝐷 × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) ) |
26 |
17 4 25
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → 𝐵 = ( 𝐾 ↑m 𝐷 ) ) |
27 |
|
reldmpsr |
⊢ Rel dom mPwSer |
28 |
27
|
ovprc2 |
⊢ ( ¬ 𝑅 ∈ V → ( 𝐼 mPwSer 𝑅 ) = ∅ ) |
29 |
28
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝑅 ∈ V ) → ( 𝐼 mPwSer 𝑅 ) = ∅ ) |
30 |
1 29
|
eqtrid |
⊢ ( ( 𝜑 ∧ ¬ 𝑅 ∈ V ) → 𝑆 = ∅ ) |
31 |
30
|
fveq2d |
⊢ ( ( 𝜑 ∧ ¬ 𝑅 ∈ V ) → ( Base ‘ 𝑆 ) = ( Base ‘ ∅ ) ) |
32 |
|
base0 |
⊢ ∅ = ( Base ‘ ∅ ) |
33 |
31 4 32
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ ¬ 𝑅 ∈ V ) → 𝐵 = ∅ ) |
34 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( Base ‘ 𝑅 ) = ∅ ) |
35 |
34
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝑅 ∈ V ) → ( Base ‘ 𝑅 ) = ∅ ) |
36 |
2 35
|
eqtrid |
⊢ ( ( 𝜑 ∧ ¬ 𝑅 ∈ V ) → 𝐾 = ∅ ) |
37 |
3
|
fczpsrbag |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝑥 ∈ 𝐼 ↦ 0 ) ∈ 𝐷 ) |
38 |
5 37
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 0 ) ∈ 𝐷 ) |
39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑅 ∈ V ) → ( 𝑥 ∈ 𝐼 ↦ 0 ) ∈ 𝐷 ) |
40 |
39
|
ne0d |
⊢ ( ( 𝜑 ∧ ¬ 𝑅 ∈ V ) → 𝐷 ≠ ∅ ) |
41 |
2
|
fvexi |
⊢ 𝐾 ∈ V |
42 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
43 |
3 42
|
rabex2 |
⊢ 𝐷 ∈ V |
44 |
41 43
|
map0 |
⊢ ( ( 𝐾 ↑m 𝐷 ) = ∅ ↔ ( 𝐾 = ∅ ∧ 𝐷 ≠ ∅ ) ) |
45 |
36 40 44
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ¬ 𝑅 ∈ V ) → ( 𝐾 ↑m 𝐷 ) = ∅ ) |
46 |
33 45
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ¬ 𝑅 ∈ V ) → 𝐵 = ( 𝐾 ↑m 𝐷 ) ) |
47 |
26 46
|
pm2.61dan |
⊢ ( 𝜑 → 𝐵 = ( 𝐾 ↑m 𝐷 ) ) |