Metamath Proof Explorer


Theorem psrbaspropd

Description: Property deduction for power series base set. (Contributed by Stefan O'Rear, 27-Mar-2015)

Ref Expression
Hypothesis psrbaspropd.e ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑆 ) )
Assertion psrbaspropd ( 𝜑 → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) )

Proof

Step Hyp Ref Expression
1 psrbaspropd.e ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑆 ) )
2 eqid ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 )
3 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
4 eqid { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } = { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin }
5 eqid ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) )
6 simpr ( ( 𝜑𝐼 ∈ V ) → 𝐼 ∈ V )
7 2 3 4 5 6 psrbas ( ( 𝜑𝐼 ∈ V ) → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( ( Base ‘ 𝑅 ) ↑m { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) )
8 eqid ( 𝐼 mPwSer 𝑆 ) = ( 𝐼 mPwSer 𝑆 )
9 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
10 eqid ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑆 ) )
11 8 9 4 10 6 psrbas ( ( 𝜑𝐼 ∈ V ) → ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) = ( ( Base ‘ 𝑆 ) ↑m { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) )
12 1 adantr ( ( 𝜑𝐼 ∈ V ) → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑆 ) )
13 12 oveq1d ( ( 𝜑𝐼 ∈ V ) → ( ( Base ‘ 𝑅 ) ↑m { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) = ( ( Base ‘ 𝑆 ) ↑m { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) )
14 11 13 eqtr4d ( ( 𝜑𝐼 ∈ V ) → ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) = ( ( Base ‘ 𝑅 ) ↑m { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) )
15 7 14 eqtr4d ( ( 𝜑𝐼 ∈ V ) → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) )
16 reldmpsr Rel dom mPwSer
17 16 ovprc1 ( ¬ 𝐼 ∈ V → ( 𝐼 mPwSer 𝑅 ) = ∅ )
18 16 ovprc1 ( ¬ 𝐼 ∈ V → ( 𝐼 mPwSer 𝑆 ) = ∅ )
19 17 18 eqtr4d ( ¬ 𝐼 ∈ V → ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑆 ) )
20 19 fveq2d ( ¬ 𝐼 ∈ V → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) )
21 20 adantl ( ( 𝜑 ∧ ¬ 𝐼 ∈ V ) → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) )
22 15 21 pm2.61dan ( 𝜑 → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) )