Step |
Hyp |
Ref |
Expression |
1 |
|
psrbaspropd.e |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑆 ) ) |
2 |
|
eqid |
⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
4 |
|
eqid |
⊢ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } = { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } |
5 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) |
6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ V ) → 𝐼 ∈ V ) |
7 |
2 3 4 5 6
|
psrbas |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ V ) → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( ( Base ‘ 𝑅 ) ↑m { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ) |
8 |
|
eqid |
⊢ ( 𝐼 mPwSer 𝑆 ) = ( 𝐼 mPwSer 𝑆 ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
10 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) |
11 |
8 9 4 10 6
|
psrbas |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ V ) → ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) = ( ( Base ‘ 𝑆 ) ↑m { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ) |
12 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ V ) → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑆 ) ) |
13 |
12
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ V ) → ( ( Base ‘ 𝑅 ) ↑m { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) = ( ( Base ‘ 𝑆 ) ↑m { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ) |
14 |
11 13
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ V ) → ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) = ( ( Base ‘ 𝑅 ) ↑m { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ) |
15 |
7 14
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ V ) → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) ) |
16 |
|
reldmpsr |
⊢ Rel dom mPwSer |
17 |
16
|
ovprc1 |
⊢ ( ¬ 𝐼 ∈ V → ( 𝐼 mPwSer 𝑅 ) = ∅ ) |
18 |
16
|
ovprc1 |
⊢ ( ¬ 𝐼 ∈ V → ( 𝐼 mPwSer 𝑆 ) = ∅ ) |
19 |
17 18
|
eqtr4d |
⊢ ( ¬ 𝐼 ∈ V → ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑆 ) ) |
20 |
19
|
fveq2d |
⊢ ( ¬ 𝐼 ∈ V → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) ) |
21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝐼 ∈ V ) → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) ) |
22 |
15 21
|
pm2.61dan |
⊢ ( 𝜑 → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) ) |