| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psrring.s | ⊢ 𝑆  =  ( 𝐼  mPwSer  𝑅 ) | 
						
							| 2 |  | psrring.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 3 |  | psrring.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 4 |  | psrass.d | ⊢ 𝐷  =  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 5 |  | psrass.t | ⊢  ×   =  ( .r ‘ 𝑆 ) | 
						
							| 6 |  | psrass.b | ⊢ 𝐵  =  ( Base ‘ 𝑆 ) | 
						
							| 7 |  | psrass.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 8 |  | psrass.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 9 |  | psrcom.c | ⊢ ( 𝜑  →  𝑅  ∈  CRing ) | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 11 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 12 |  | ringcmn | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  CMnd ) | 
						
							| 13 | 3 12 | syl | ⊢ ( 𝜑  →  𝑅  ∈  CMnd ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  𝑅  ∈  CMnd ) | 
						
							| 15 | 4 | psrbaglefi | ⊢ ( 𝑥  ∈  𝐷  →  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ∈  Fin ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ∈  Fin ) | 
						
							| 17 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  𝑅  ∈  Ring ) | 
						
							| 18 | 1 10 4 6 7 | psrelbas | ⊢ ( 𝜑  →  𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 19 | 18 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 20 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } ) | 
						
							| 21 |  | breq1 | ⊢ ( 𝑔  =  𝑘  →  ( 𝑔  ∘r   ≤  𝑥  ↔  𝑘  ∘r   ≤  𝑥 ) ) | 
						
							| 22 | 21 | elrab | ⊢ ( 𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↔  ( 𝑘  ∈  𝐷  ∧  𝑘  ∘r   ≤  𝑥 ) ) | 
						
							| 23 | 20 22 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( 𝑘  ∈  𝐷  ∧  𝑘  ∘r   ≤  𝑥 ) ) | 
						
							| 24 | 23 | simpld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  𝑘  ∈  𝐷 ) | 
						
							| 25 | 19 24 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( 𝑋 ‘ 𝑘 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 26 | 1 10 4 6 8 | psrelbas | ⊢ ( 𝜑  →  𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 27 | 26 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 28 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  𝑥  ∈  𝐷 ) | 
						
							| 29 | 4 | psrbagf | ⊢ ( 𝑘  ∈  𝐷  →  𝑘 : 𝐼 ⟶ ℕ0 ) | 
						
							| 30 | 24 29 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  𝑘 : 𝐼 ⟶ ℕ0 ) | 
						
							| 31 | 23 | simprd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  𝑘  ∘r   ≤  𝑥 ) | 
						
							| 32 | 4 | psrbagcon | ⊢ ( ( 𝑥  ∈  𝐷  ∧  𝑘 : 𝐼 ⟶ ℕ0  ∧  𝑘  ∘r   ≤  𝑥 )  →  ( ( 𝑥  ∘f   −  𝑘 )  ∈  𝐷  ∧  ( 𝑥  ∘f   −  𝑘 )  ∘r   ≤  𝑥 ) ) | 
						
							| 33 | 28 30 31 32 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( ( 𝑥  ∘f   −  𝑘 )  ∈  𝐷  ∧  ( 𝑥  ∘f   −  𝑘 )  ∘r   ≤  𝑥 ) ) | 
						
							| 34 | 33 | simpld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( 𝑥  ∘f   −  𝑘 )  ∈  𝐷 ) | 
						
							| 35 | 27 34 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( 𝑌 ‘ ( 𝑥  ∘f   −  𝑘 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 36 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 37 | 10 36 | ringcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑋 ‘ 𝑘 )  ∈  ( Base ‘ 𝑅 )  ∧  ( 𝑌 ‘ ( 𝑥  ∘f   −  𝑘 ) )  ∈  ( Base ‘ 𝑅 ) )  →  ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥  ∘f   −  𝑘 ) ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 38 | 17 25 35 37 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥  ∘f   −  𝑘 ) ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 39 | 38 | fmpttd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( 𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥  ∘f   −  𝑘 ) ) ) ) : { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 40 |  | ovex | ⊢ ( ℕ0  ↑m  𝐼 )  ∈  V | 
						
							| 41 | 4 40 | rabex2 | ⊢ 𝐷  ∈  V | 
						
							| 42 | 41 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  𝐷  ∈  V ) | 
						
							| 43 |  | rabexg | ⊢ ( 𝐷  ∈  V  →  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ∈  V ) | 
						
							| 44 | 42 43 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ∈  V ) | 
						
							| 45 | 44 | mptexd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( 𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥  ∘f   −  𝑘 ) ) ) )  ∈  V ) | 
						
							| 46 |  | funmpt | ⊢ Fun  ( 𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥  ∘f   −  𝑘 ) ) ) ) | 
						
							| 47 | 46 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  Fun  ( 𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥  ∘f   −  𝑘 ) ) ) ) ) | 
						
							| 48 |  | fvexd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( 0g ‘ 𝑅 )  ∈  V ) | 
						
							| 49 |  | suppssdm | ⊢ ( ( 𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥  ∘f   −  𝑘 ) ) ) )  supp  ( 0g ‘ 𝑅 ) )  ⊆  dom  ( 𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥  ∘f   −  𝑘 ) ) ) ) | 
						
							| 50 |  | eqid | ⊢ ( 𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥  ∘f   −  𝑘 ) ) ) )  =  ( 𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥  ∘f   −  𝑘 ) ) ) ) | 
						
							| 51 | 50 | dmmptss | ⊢ dom  ( 𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥  ∘f   −  𝑘 ) ) ) )  ⊆  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } | 
						
							| 52 | 49 51 | sstri | ⊢ ( ( 𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥  ∘f   −  𝑘 ) ) ) )  supp  ( 0g ‘ 𝑅 ) )  ⊆  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } | 
						
							| 53 | 52 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( ( 𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥  ∘f   −  𝑘 ) ) ) )  supp  ( 0g ‘ 𝑅 ) )  ⊆  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } ) | 
						
							| 54 |  | suppssfifsupp | ⊢ ( ( ( ( 𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥  ∘f   −  𝑘 ) ) ) )  ∈  V  ∧  Fun  ( 𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥  ∘f   −  𝑘 ) ) ) )  ∧  ( 0g ‘ 𝑅 )  ∈  V )  ∧  ( { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ∈  Fin  ∧  ( ( 𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥  ∘f   −  𝑘 ) ) ) )  supp  ( 0g ‘ 𝑅 ) )  ⊆  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } ) )  →  ( 𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥  ∘f   −  𝑘 ) ) ) )  finSupp  ( 0g ‘ 𝑅 ) ) | 
						
							| 55 | 45 47 48 16 53 54 | syl32anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( 𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥  ∘f   −  𝑘 ) ) ) )  finSupp  ( 0g ‘ 𝑅 ) ) | 
						
							| 56 |  | eqid | ⊢ { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  =  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } | 
						
							| 57 | 4 56 | psrbagconf1o | ⊢ ( 𝑥  ∈  𝐷  →  ( 𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( 𝑥  ∘f   −  𝑗 ) ) : { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } –1-1-onto→ { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } ) | 
						
							| 58 | 57 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( 𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( 𝑥  ∘f   −  𝑗 ) ) : { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } –1-1-onto→ { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } ) | 
						
							| 59 | 10 11 14 16 39 55 58 | gsumf1o | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( 𝑅  Σg  ( 𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥  ∘f   −  𝑘 ) ) ) ) )  =  ( 𝑅  Σg  ( ( 𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥  ∘f   −  𝑘 ) ) ) )  ∘  ( 𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( 𝑥  ∘f   −  𝑗 ) ) ) ) ) | 
						
							| 60 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  𝑥  ∈  𝐷 ) | 
						
							| 61 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } ) | 
						
							| 62 | 4 56 | psrbagconcl | ⊢ ( ( 𝑥  ∈  𝐷  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( 𝑥  ∘f   −  𝑗 )  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } ) | 
						
							| 63 | 60 61 62 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( 𝑥  ∘f   −  𝑗 )  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } ) | 
						
							| 64 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( 𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( 𝑥  ∘f   −  𝑗 ) )  =  ( 𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( 𝑥  ∘f   −  𝑗 ) ) ) | 
						
							| 65 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( 𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥  ∘f   −  𝑘 ) ) ) )  =  ( 𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥  ∘f   −  𝑘 ) ) ) ) ) | 
						
							| 66 |  | fveq2 | ⊢ ( 𝑘  =  ( 𝑥  ∘f   −  𝑗 )  →  ( 𝑋 ‘ 𝑘 )  =  ( 𝑋 ‘ ( 𝑥  ∘f   −  𝑗 ) ) ) | 
						
							| 67 |  | oveq2 | ⊢ ( 𝑘  =  ( 𝑥  ∘f   −  𝑗 )  →  ( 𝑥  ∘f   −  𝑘 )  =  ( 𝑥  ∘f   −  ( 𝑥  ∘f   −  𝑗 ) ) ) | 
						
							| 68 | 67 | fveq2d | ⊢ ( 𝑘  =  ( 𝑥  ∘f   −  𝑗 )  →  ( 𝑌 ‘ ( 𝑥  ∘f   −  𝑘 ) )  =  ( 𝑌 ‘ ( 𝑥  ∘f   −  ( 𝑥  ∘f   −  𝑗 ) ) ) ) | 
						
							| 69 | 66 68 | oveq12d | ⊢ ( 𝑘  =  ( 𝑥  ∘f   −  𝑗 )  →  ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥  ∘f   −  𝑘 ) ) )  =  ( ( 𝑋 ‘ ( 𝑥  ∘f   −  𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥  ∘f   −  ( 𝑥  ∘f   −  𝑗 ) ) ) ) ) | 
						
							| 70 | 63 64 65 69 | fmptco | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( ( 𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥  ∘f   −  𝑘 ) ) ) )  ∘  ( 𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( 𝑥  ∘f   −  𝑗 ) ) )  =  ( 𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( 𝑋 ‘ ( 𝑥  ∘f   −  𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥  ∘f   −  ( 𝑥  ∘f   −  𝑗 ) ) ) ) ) ) | 
						
							| 71 | 4 | psrbagf | ⊢ ( 𝑥  ∈  𝐷  →  𝑥 : 𝐼 ⟶ ℕ0 ) | 
						
							| 72 | 71 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  𝑥 : 𝐼 ⟶ ℕ0 ) | 
						
							| 73 | 72 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  𝑥 : 𝐼 ⟶ ℕ0 ) | 
						
							| 74 | 73 | ffvelcdmda | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑧  ∈  𝐼 )  →  ( 𝑥 ‘ 𝑧 )  ∈  ℕ0 ) | 
						
							| 75 |  | breq1 | ⊢ ( 𝑔  =  𝑗  →  ( 𝑔  ∘r   ≤  𝑥  ↔  𝑗  ∘r   ≤  𝑥 ) ) | 
						
							| 76 | 75 | elrab | ⊢ ( 𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↔  ( 𝑗  ∈  𝐷  ∧  𝑗  ∘r   ≤  𝑥 ) ) | 
						
							| 77 | 61 76 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( 𝑗  ∈  𝐷  ∧  𝑗  ∘r   ≤  𝑥 ) ) | 
						
							| 78 | 77 | simpld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  𝑗  ∈  𝐷 ) | 
						
							| 79 | 4 | psrbagf | ⊢ ( 𝑗  ∈  𝐷  →  𝑗 : 𝐼 ⟶ ℕ0 ) | 
						
							| 80 | 78 79 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  𝑗 : 𝐼 ⟶ ℕ0 ) | 
						
							| 81 | 80 | ffvelcdmda | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑧  ∈  𝐼 )  →  ( 𝑗 ‘ 𝑧 )  ∈  ℕ0 ) | 
						
							| 82 |  | nn0cn | ⊢ ( ( 𝑥 ‘ 𝑧 )  ∈  ℕ0  →  ( 𝑥 ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 83 |  | nn0cn | ⊢ ( ( 𝑗 ‘ 𝑧 )  ∈  ℕ0  →  ( 𝑗 ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 84 |  | nncan | ⊢ ( ( ( 𝑥 ‘ 𝑧 )  ∈  ℂ  ∧  ( 𝑗 ‘ 𝑧 )  ∈  ℂ )  →  ( ( 𝑥 ‘ 𝑧 )  −  ( ( 𝑥 ‘ 𝑧 )  −  ( 𝑗 ‘ 𝑧 ) ) )  =  ( 𝑗 ‘ 𝑧 ) ) | 
						
							| 85 | 82 83 84 | syl2an | ⊢ ( ( ( 𝑥 ‘ 𝑧 )  ∈  ℕ0  ∧  ( 𝑗 ‘ 𝑧 )  ∈  ℕ0 )  →  ( ( 𝑥 ‘ 𝑧 )  −  ( ( 𝑥 ‘ 𝑧 )  −  ( 𝑗 ‘ 𝑧 ) ) )  =  ( 𝑗 ‘ 𝑧 ) ) | 
						
							| 86 | 74 81 85 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑧  ∈  𝐼 )  →  ( ( 𝑥 ‘ 𝑧 )  −  ( ( 𝑥 ‘ 𝑧 )  −  ( 𝑗 ‘ 𝑧 ) ) )  =  ( 𝑗 ‘ 𝑧 ) ) | 
						
							| 87 | 86 | mpteq2dva | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( 𝑧  ∈  𝐼  ↦  ( ( 𝑥 ‘ 𝑧 )  −  ( ( 𝑥 ‘ 𝑧 )  −  ( 𝑗 ‘ 𝑧 ) ) ) )  =  ( 𝑧  ∈  𝐼  ↦  ( 𝑗 ‘ 𝑧 ) ) ) | 
						
							| 88 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  𝐼  ∈  𝑉 ) | 
						
							| 89 |  | ovex | ⊢ ( ( 𝑥 ‘ 𝑧 )  −  ( 𝑗 ‘ 𝑧 ) )  ∈  V | 
						
							| 90 | 89 | a1i | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑧  ∈  𝐼 )  →  ( ( 𝑥 ‘ 𝑧 )  −  ( 𝑗 ‘ 𝑧 ) )  ∈  V ) | 
						
							| 91 | 73 | feqmptd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  𝑥  =  ( 𝑧  ∈  𝐼  ↦  ( 𝑥 ‘ 𝑧 ) ) ) | 
						
							| 92 | 80 | feqmptd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  𝑗  =  ( 𝑧  ∈  𝐼  ↦  ( 𝑗 ‘ 𝑧 ) ) ) | 
						
							| 93 | 88 74 81 91 92 | offval2 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( 𝑥  ∘f   −  𝑗 )  =  ( 𝑧  ∈  𝐼  ↦  ( ( 𝑥 ‘ 𝑧 )  −  ( 𝑗 ‘ 𝑧 ) ) ) ) | 
						
							| 94 | 88 74 90 91 93 | offval2 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( 𝑥  ∘f   −  ( 𝑥  ∘f   −  𝑗 ) )  =  ( 𝑧  ∈  𝐼  ↦  ( ( 𝑥 ‘ 𝑧 )  −  ( ( 𝑥 ‘ 𝑧 )  −  ( 𝑗 ‘ 𝑧 ) ) ) ) ) | 
						
							| 95 | 87 94 92 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( 𝑥  ∘f   −  ( 𝑥  ∘f   −  𝑗 ) )  =  𝑗 ) | 
						
							| 96 | 95 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( 𝑌 ‘ ( 𝑥  ∘f   −  ( 𝑥  ∘f   −  𝑗 ) ) )  =  ( 𝑌 ‘ 𝑗 ) ) | 
						
							| 97 | 96 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( ( 𝑋 ‘ ( 𝑥  ∘f   −  𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥  ∘f   −  ( 𝑥  ∘f   −  𝑗 ) ) ) )  =  ( ( 𝑋 ‘ ( 𝑥  ∘f   −  𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑗 ) ) ) | 
						
							| 98 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  𝑅  ∈  CRing ) | 
						
							| 99 | 18 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 100 | 77 | simprd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  𝑗  ∘r   ≤  𝑥 ) | 
						
							| 101 | 4 | psrbagcon | ⊢ ( ( 𝑥  ∈  𝐷  ∧  𝑗 : 𝐼 ⟶ ℕ0  ∧  𝑗  ∘r   ≤  𝑥 )  →  ( ( 𝑥  ∘f   −  𝑗 )  ∈  𝐷  ∧  ( 𝑥  ∘f   −  𝑗 )  ∘r   ≤  𝑥 ) ) | 
						
							| 102 | 60 80 100 101 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( ( 𝑥  ∘f   −  𝑗 )  ∈  𝐷  ∧  ( 𝑥  ∘f   −  𝑗 )  ∘r   ≤  𝑥 ) ) | 
						
							| 103 | 102 | simpld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( 𝑥  ∘f   −  𝑗 )  ∈  𝐷 ) | 
						
							| 104 | 99 103 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( 𝑋 ‘ ( 𝑥  ∘f   −  𝑗 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 105 | 26 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 106 | 105 78 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( 𝑌 ‘ 𝑗 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 107 | 10 36 | crngcom | ⊢ ( ( 𝑅  ∈  CRing  ∧  ( 𝑋 ‘ ( 𝑥  ∘f   −  𝑗 ) )  ∈  ( Base ‘ 𝑅 )  ∧  ( 𝑌 ‘ 𝑗 )  ∈  ( Base ‘ 𝑅 ) )  →  ( ( 𝑋 ‘ ( 𝑥  ∘f   −  𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑗 ) )  =  ( ( 𝑌 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑥  ∘f   −  𝑗 ) ) ) ) | 
						
							| 108 | 98 104 106 107 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( ( 𝑋 ‘ ( 𝑥  ∘f   −  𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑗 ) )  =  ( ( 𝑌 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑥  ∘f   −  𝑗 ) ) ) ) | 
						
							| 109 | 97 108 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( ( 𝑋 ‘ ( 𝑥  ∘f   −  𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥  ∘f   −  ( 𝑥  ∘f   −  𝑗 ) ) ) )  =  ( ( 𝑌 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑥  ∘f   −  𝑗 ) ) ) ) | 
						
							| 110 | 109 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( 𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( 𝑋 ‘ ( 𝑥  ∘f   −  𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥  ∘f   −  ( 𝑥  ∘f   −  𝑗 ) ) ) ) )  =  ( 𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( 𝑌 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑥  ∘f   −  𝑗 ) ) ) ) ) | 
						
							| 111 | 70 110 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( ( 𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥  ∘f   −  𝑘 ) ) ) )  ∘  ( 𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( 𝑥  ∘f   −  𝑗 ) ) )  =  ( 𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( 𝑌 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑥  ∘f   −  𝑗 ) ) ) ) ) | 
						
							| 112 | 111 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( 𝑅  Σg  ( ( 𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥  ∘f   −  𝑘 ) ) ) )  ∘  ( 𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( 𝑥  ∘f   −  𝑗 ) ) ) )  =  ( 𝑅  Σg  ( 𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( 𝑌 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑥  ∘f   −  𝑗 ) ) ) ) ) ) | 
						
							| 113 | 59 112 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( 𝑅  Σg  ( 𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥  ∘f   −  𝑘 ) ) ) ) )  =  ( 𝑅  Σg  ( 𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( 𝑌 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑥  ∘f   −  𝑗 ) ) ) ) ) ) | 
						
							| 114 | 113 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐷  ↦  ( 𝑅  Σg  ( 𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥  ∘f   −  𝑘 ) ) ) ) ) )  =  ( 𝑥  ∈  𝐷  ↦  ( 𝑅  Σg  ( 𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( 𝑌 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑥  ∘f   −  𝑗 ) ) ) ) ) ) ) | 
						
							| 115 | 1 6 36 5 4 7 8 | psrmulfval | ⊢ ( 𝜑  →  ( 𝑋  ×  𝑌 )  =  ( 𝑥  ∈  𝐷  ↦  ( 𝑅  Σg  ( 𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥  ∘f   −  𝑘 ) ) ) ) ) ) ) | 
						
							| 116 | 1 6 36 5 4 8 7 | psrmulfval | ⊢ ( 𝜑  →  ( 𝑌  ×  𝑋 )  =  ( 𝑥  ∈  𝐷  ↦  ( 𝑅  Σg  ( 𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( 𝑌 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑥  ∘f   −  𝑗 ) ) ) ) ) ) ) | 
						
							| 117 | 114 115 116 | 3eqtr4d | ⊢ ( 𝜑  →  ( 𝑋  ×  𝑌 )  =  ( 𝑌  ×  𝑋 ) ) |