| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psrcnrg.s | ⊢ 𝑆  =  ( 𝐼  mPwSer  𝑅 ) | 
						
							| 2 |  | psrcnrg.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 3 |  | psrcnrg.r | ⊢ ( 𝜑  →  𝑅  ∈  CRing ) | 
						
							| 4 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 6 | 1 2 5 | psrring | ⊢ ( 𝜑  →  𝑆  ∈  Ring ) | 
						
							| 7 |  | eqid | ⊢ ( mulGrp ‘ 𝑆 )  =  ( mulGrp ‘ 𝑆 ) | 
						
							| 8 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 9 | 7 8 | mgpbas | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ ( mulGrp ‘ 𝑆 ) ) | 
						
							| 10 | 9 | a1i | ⊢ ( 𝜑  →  ( Base ‘ 𝑆 )  =  ( Base ‘ ( mulGrp ‘ 𝑆 ) ) ) | 
						
							| 11 |  | eqid | ⊢ ( .r ‘ 𝑆 )  =  ( .r ‘ 𝑆 ) | 
						
							| 12 | 7 11 | mgpplusg | ⊢ ( .r ‘ 𝑆 )  =  ( +g ‘ ( mulGrp ‘ 𝑆 ) ) | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  ( .r ‘ 𝑆 )  =  ( +g ‘ ( mulGrp ‘ 𝑆 ) ) ) | 
						
							| 14 | 7 | ringmgp | ⊢ ( 𝑆  ∈  Ring  →  ( mulGrp ‘ 𝑆 )  ∈  Mnd ) | 
						
							| 15 | 6 14 | syl | ⊢ ( 𝜑  →  ( mulGrp ‘ 𝑆 )  ∈  Mnd ) | 
						
							| 16 | 2 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  𝐼  ∈  𝑉 ) | 
						
							| 17 | 5 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  𝑅  ∈  Ring ) | 
						
							| 18 |  | eqid | ⊢ { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  =  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 19 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  𝑥  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 20 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  𝑦  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 21 | 3 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  𝑅  ∈  CRing ) | 
						
							| 22 | 1 16 17 18 11 8 19 20 21 | psrcom | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝑆 ) 𝑥 ) ) | 
						
							| 23 | 10 13 15 22 | iscmnd | ⊢ ( 𝜑  →  ( mulGrp ‘ 𝑆 )  ∈  CMnd ) | 
						
							| 24 | 7 | iscrng | ⊢ ( 𝑆  ∈  CRing  ↔  ( 𝑆  ∈  Ring  ∧  ( mulGrp ‘ 𝑆 )  ∈  CMnd ) ) | 
						
							| 25 | 6 23 24 | sylanbrc | ⊢ ( 𝜑  →  𝑆  ∈  CRing ) |