Step |
Hyp |
Ref |
Expression |
1 |
|
psrcnrg.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
2 |
|
psrcnrg.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
3 |
|
psrcnrg.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
4 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
5 |
3 4
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
6 |
1 2 5
|
psrring |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
7 |
|
eqid |
⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
9 |
7 8
|
mgpbas |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ ( mulGrp ‘ 𝑆 ) ) |
10 |
9
|
a1i |
⊢ ( 𝜑 → ( Base ‘ 𝑆 ) = ( Base ‘ ( mulGrp ‘ 𝑆 ) ) ) |
11 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
12 |
7 11
|
mgpplusg |
⊢ ( .r ‘ 𝑆 ) = ( +g ‘ ( mulGrp ‘ 𝑆 ) ) |
13 |
12
|
a1i |
⊢ ( 𝜑 → ( .r ‘ 𝑆 ) = ( +g ‘ ( mulGrp ‘ 𝑆 ) ) ) |
14 |
7
|
ringmgp |
⊢ ( 𝑆 ∈ Ring → ( mulGrp ‘ 𝑆 ) ∈ Mnd ) |
15 |
6 14
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑆 ) ∈ Mnd ) |
16 |
2
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → 𝐼 ∈ 𝑉 ) |
17 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → 𝑅 ∈ Ring ) |
18 |
|
eqid |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
19 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
20 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) ) |
21 |
3
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → 𝑅 ∈ CRing ) |
22 |
1 16 17 18 11 8 19 20 21
|
psrcom |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝑆 ) 𝑥 ) ) |
23 |
10 13 15 22
|
iscmnd |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑆 ) ∈ CMnd ) |
24 |
7
|
iscrng |
⊢ ( 𝑆 ∈ CRing ↔ ( 𝑆 ∈ Ring ∧ ( mulGrp ‘ 𝑆 ) ∈ CMnd ) ) |
25 |
6 23 24
|
sylanbrc |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |