Metamath Proof Explorer


Theorem psrcrng

Description: The ring of power series is commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015)

Ref Expression
Hypotheses psrcnrg.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
psrcnrg.i ( 𝜑𝐼𝑉 )
psrcnrg.r ( 𝜑𝑅 ∈ CRing )
Assertion psrcrng ( 𝜑𝑆 ∈ CRing )

Proof

Step Hyp Ref Expression
1 psrcnrg.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
2 psrcnrg.i ( 𝜑𝐼𝑉 )
3 psrcnrg.r ( 𝜑𝑅 ∈ CRing )
4 crngring ( 𝑅 ∈ CRing → 𝑅 ∈ Ring )
5 3 4 syl ( 𝜑𝑅 ∈ Ring )
6 1 2 5 psrring ( 𝜑𝑆 ∈ Ring )
7 eqid ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 )
8 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
9 7 8 mgpbas ( Base ‘ 𝑆 ) = ( Base ‘ ( mulGrp ‘ 𝑆 ) )
10 9 a1i ( 𝜑 → ( Base ‘ 𝑆 ) = ( Base ‘ ( mulGrp ‘ 𝑆 ) ) )
11 eqid ( .r𝑆 ) = ( .r𝑆 )
12 7 11 mgpplusg ( .r𝑆 ) = ( +g ‘ ( mulGrp ‘ 𝑆 ) )
13 12 a1i ( 𝜑 → ( .r𝑆 ) = ( +g ‘ ( mulGrp ‘ 𝑆 ) ) )
14 7 ringmgp ( 𝑆 ∈ Ring → ( mulGrp ‘ 𝑆 ) ∈ Mnd )
15 6 14 syl ( 𝜑 → ( mulGrp ‘ 𝑆 ) ∈ Mnd )
16 2 3ad2ant1 ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → 𝐼𝑉 )
17 5 3ad2ant1 ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → 𝑅 ∈ Ring )
18 eqid { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
19 simp2 ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) )
20 simp3 ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) )
21 3 3ad2ant1 ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → 𝑅 ∈ CRing )
22 1 16 17 18 11 8 19 20 21 psrcom ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( .r𝑆 ) 𝑦 ) = ( 𝑦 ( .r𝑆 ) 𝑥 ) )
23 10 13 15 22 iscmnd ( 𝜑 → ( mulGrp ‘ 𝑆 ) ∈ CMnd )
24 7 iscrng ( 𝑆 ∈ CRing ↔ ( 𝑆 ∈ Ring ∧ ( mulGrp ‘ 𝑆 ) ∈ CMnd ) )
25 6 23 24 sylanbrc ( 𝜑𝑆 ∈ CRing )