| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							psref.1 | 
							⊢ 𝑋  =  dom  𝑅  | 
						
						
							| 2 | 
							
								
							 | 
							psdmrn | 
							⊢ ( 𝑅  ∈  PosetRel  →  ( dom  𝑅  =  ∪  ∪  𝑅  ∧  ran  𝑅  =  ∪  ∪  𝑅 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							simpld | 
							⊢ ( 𝑅  ∈  PosetRel  →  dom  𝑅  =  ∪  ∪  𝑅 )  | 
						
						
							| 4 | 
							
								1 3
							 | 
							eqtrid | 
							⊢ ( 𝑅  ∈  PosetRel  →  𝑋  =  ∪  ∪  𝑅 )  | 
						
						
							| 5 | 
							
								4
							 | 
							eleq2d | 
							⊢ ( 𝑅  ∈  PosetRel  →  ( 𝐴  ∈  𝑋  ↔  𝐴  ∈  ∪  ∪  𝑅 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							pslem | 
							⊢ ( 𝑅  ∈  PosetRel  →  ( ( ( 𝐴 𝑅 𝐴  ∧  𝐴 𝑅 𝐴 )  →  𝐴 𝑅 𝐴 )  ∧  ( 𝐴  ∈  ∪  ∪  𝑅  →  𝐴 𝑅 𝐴 )  ∧  ( ( 𝐴 𝑅 𝐴  ∧  𝐴 𝑅 𝐴 )  →  𝐴  =  𝐴 ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							simp2d | 
							⊢ ( 𝑅  ∈  PosetRel  →  ( 𝐴  ∈  ∪  ∪  𝑅  →  𝐴 𝑅 𝐴 ) )  | 
						
						
							| 8 | 
							
								5 7
							 | 
							sylbid | 
							⊢ ( 𝑅  ∈  PosetRel  →  ( 𝐴  ∈  𝑋  →  𝐴 𝑅 𝐴 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							imp | 
							⊢ ( ( 𝑅  ∈  PosetRel  ∧  𝐴  ∈  𝑋 )  →  𝐴 𝑅 𝐴 )  |