Description: A poset is antisymmetric and reflexive. (Contributed by FL, 3-Aug-2009)
Ref | Expression | ||
---|---|---|---|
Assertion | psref2 | ⊢ ( 𝑅 ∈ PosetRel → ( 𝑅 ∩ ◡ 𝑅 ) = ( I ↾ ∪ ∪ 𝑅 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isps | ⊢ ( 𝑅 ∈ PosetRel → ( 𝑅 ∈ PosetRel ↔ ( Rel 𝑅 ∧ ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ∧ ( 𝑅 ∩ ◡ 𝑅 ) = ( I ↾ ∪ ∪ 𝑅 ) ) ) ) | |
2 | 1 | ibi | ⊢ ( 𝑅 ∈ PosetRel → ( Rel 𝑅 ∧ ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ∧ ( 𝑅 ∩ ◡ 𝑅 ) = ( I ↾ ∪ ∪ 𝑅 ) ) ) |
3 | 2 | simp3d | ⊢ ( 𝑅 ∈ PosetRel → ( 𝑅 ∩ ◡ 𝑅 ) = ( I ↾ ∪ ∪ 𝑅 ) ) |