Description: A poset is antisymmetric and reflexive. (Contributed by FL, 3-Aug-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | psref2 | ⊢ ( 𝑅 ∈ PosetRel → ( 𝑅 ∩ ◡ 𝑅 ) = ( I ↾ ∪ ∪ 𝑅 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isps | ⊢ ( 𝑅 ∈ PosetRel → ( 𝑅 ∈ PosetRel ↔ ( Rel 𝑅 ∧ ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ∧ ( 𝑅 ∩ ◡ 𝑅 ) = ( I ↾ ∪ ∪ 𝑅 ) ) ) ) | |
| 2 | 1 | ibi | ⊢ ( 𝑅 ∈ PosetRel → ( Rel 𝑅 ∧ ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ∧ ( 𝑅 ∩ ◡ 𝑅 ) = ( I ↾ ∪ ∪ 𝑅 ) ) ) | 
| 3 | 2 | simp3d | ⊢ ( 𝑅 ∈ PosetRel → ( 𝑅 ∩ ◡ 𝑅 ) = ( I ↾ ∪ ∪ 𝑅 ) ) |