Metamath Proof Explorer


Theorem psrel

Description: A poset is a relation. (Contributed by NM, 12-May-2008)

Ref Expression
Assertion psrel ( 𝐴 ∈ PosetRel → Rel 𝐴 )

Proof

Step Hyp Ref Expression
1 isps ( 𝐴 ∈ PosetRel → ( 𝐴 ∈ PosetRel ↔ ( Rel 𝐴 ∧ ( 𝐴𝐴 ) ⊆ 𝐴 ∧ ( 𝐴 𝐴 ) = ( I ↾ 𝐴 ) ) ) )
2 1 ibi ( 𝐴 ∈ PosetRel → ( Rel 𝐴 ∧ ( 𝐴𝐴 ) ⊆ 𝐴 ∧ ( 𝐴 𝐴 ) = ( I ↾ 𝐴 ) ) )
3 2 simp1d ( 𝐴 ∈ PosetRel → Rel 𝐴 )