Description: A poset is a relation. (Contributed by NM, 12-May-2008)
Ref | Expression | ||
---|---|---|---|
Assertion | psrel | ⊢ ( 𝐴 ∈ PosetRel → Rel 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isps | ⊢ ( 𝐴 ∈ PosetRel → ( 𝐴 ∈ PosetRel ↔ ( Rel 𝐴 ∧ ( 𝐴 ∘ 𝐴 ) ⊆ 𝐴 ∧ ( 𝐴 ∩ ◡ 𝐴 ) = ( I ↾ ∪ ∪ 𝐴 ) ) ) ) | |
2 | 1 | ibi | ⊢ ( 𝐴 ∈ PosetRel → ( Rel 𝐴 ∧ ( 𝐴 ∘ 𝐴 ) ⊆ 𝐴 ∧ ( 𝐴 ∩ ◡ 𝐴 ) = ( I ↾ ∪ ∪ 𝐴 ) ) ) |
3 | 2 | simp1d | ⊢ ( 𝐴 ∈ PosetRel → Rel 𝐴 ) |