Step |
Hyp |
Ref |
Expression |
1 |
|
psrgrp.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
2 |
|
psrgrp.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
3 |
|
psrgrp.r |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
4 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
5 |
4
|
rabex |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V |
6 |
|
eqid |
⊢ ( 𝑅 ↑s { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) = ( 𝑅 ↑s { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) |
7 |
6
|
pwsgrp |
⊢ ( ( 𝑅 ∈ Grp ∧ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V ) → ( 𝑅 ↑s { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∈ Grp ) |
8 |
3 5 7
|
sylancl |
⊢ ( 𝜑 → ( 𝑅 ↑s { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∈ Grp ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
10 |
6 9
|
pwsbas |
⊢ ( ( 𝑅 ∈ Grp ∧ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V ) → ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) = ( Base ‘ ( 𝑅 ↑s { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) ) |
11 |
3 5 10
|
sylancl |
⊢ ( 𝜑 → ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) = ( Base ‘ ( 𝑅 ↑s { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) ) |
12 |
|
eqid |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
13 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
14 |
1 9 12 13 2
|
psrbas |
⊢ ( 𝜑 → ( Base ‘ 𝑆 ) = ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
15 |
14
|
eqcomd |
⊢ ( 𝜑 → ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) = ( Base ‘ 𝑆 ) ) |
16 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ↑s { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) = ( Base ‘ ( 𝑅 ↑s { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
17 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) ) → 𝑅 ∈ Grp ) |
18 |
5
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) ) → { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V ) |
19 |
11
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ↔ 𝑥 ∈ ( Base ‘ ( 𝑅 ↑s { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) ) ) |
20 |
19
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) → 𝑥 ∈ ( Base ‘ ( 𝑅 ↑s { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) ) |
21 |
20
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) ) → 𝑥 ∈ ( Base ‘ ( 𝑅 ↑s { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) ) |
22 |
11
|
eleq2d |
⊢ ( 𝜑 → ( 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ↔ 𝑦 ∈ ( Base ‘ ( 𝑅 ↑s { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) ) ) |
23 |
22
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) → 𝑦 ∈ ( Base ‘ ( 𝑅 ↑s { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) ) |
24 |
23
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) ) → 𝑦 ∈ ( Base ‘ ( 𝑅 ↑s { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) ) |
25 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
26 |
|
eqid |
⊢ ( +g ‘ ( 𝑅 ↑s { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) = ( +g ‘ ( 𝑅 ↑s { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
27 |
6 16 17 18 21 24 25 26
|
pwsplusgval |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) ) → ( 𝑥 ( +g ‘ ( 𝑅 ↑s { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) 𝑦 ) = ( 𝑥 ∘f ( +g ‘ 𝑅 ) 𝑦 ) ) |
28 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
29 |
14
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝑆 ) ↔ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) ) |
30 |
29
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
31 |
30
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
32 |
14
|
eleq2d |
⊢ ( 𝜑 → ( 𝑦 ∈ ( Base ‘ 𝑆 ) ↔ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) ) |
33 |
32
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) ) |
34 |
33
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) ) |
35 |
1 13 25 28 31 34
|
psradd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) = ( 𝑥 ∘f ( +g ‘ 𝑅 ) 𝑦 ) ) |
36 |
27 35
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) ) → ( 𝑥 ( +g ‘ ( 𝑅 ↑s { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) |
37 |
11 15 36
|
grppropd |
⊢ ( 𝜑 → ( ( 𝑅 ↑s { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∈ Grp ↔ 𝑆 ∈ Grp ) ) |
38 |
8 37
|
mpbid |
⊢ ( 𝜑 → 𝑆 ∈ Grp ) |