| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psrgrp.s | ⊢ 𝑆  =  ( 𝐼  mPwSer  𝑅 ) | 
						
							| 2 |  | psrgrp.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 3 |  | psrgrp.r | ⊢ ( 𝜑  →  𝑅  ∈  Grp ) | 
						
							| 4 |  | eqidd | ⊢ ( 𝜑  →  ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) ) | 
						
							| 5 |  | eqidd | ⊢ ( 𝜑  →  ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑆 ) ) | 
						
							| 6 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 7 |  | eqid | ⊢ ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑆 ) | 
						
							| 8 | 3 | grpmgmd | ⊢ ( 𝜑  →  𝑅  ∈  Mgm ) | 
						
							| 9 | 8 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  𝑅  ∈  Mgm ) | 
						
							| 10 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  𝑥  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 11 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  𝑦  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 12 | 1 6 7 9 10 11 | psraddcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 13 |  | ovex | ⊢ ( ℕ0  ↑m  𝐼 )  ∈  V | 
						
							| 14 | 13 | rabex | ⊢ { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∈  V | 
						
							| 15 | 14 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 )  ∧  𝑧  ∈  ( Base ‘ 𝑆 ) ) )  →  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∈  V ) | 
						
							| 16 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 17 |  | eqid | ⊢ { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  =  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 18 |  | simpr1 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 )  ∧  𝑧  ∈  ( Base ‘ 𝑆 ) ) )  →  𝑥  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 19 | 1 16 17 6 18 | psrelbas | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 )  ∧  𝑧  ∈  ( Base ‘ 𝑆 ) ) )  →  𝑥 : { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 20 |  | simpr2 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 )  ∧  𝑧  ∈  ( Base ‘ 𝑆 ) ) )  →  𝑦  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 21 | 1 16 17 6 20 | psrelbas | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 )  ∧  𝑧  ∈  ( Base ‘ 𝑆 ) ) )  →  𝑦 : { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 22 |  | simpr3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 )  ∧  𝑧  ∈  ( Base ‘ 𝑆 ) ) )  →  𝑧  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 23 | 1 16 17 6 22 | psrelbas | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 )  ∧  𝑧  ∈  ( Base ‘ 𝑆 ) ) )  →  𝑧 : { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 24 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 )  ∧  𝑧  ∈  ( Base ‘ 𝑆 ) ) )  →  𝑅  ∈  Grp ) | 
						
							| 25 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 26 | 16 25 | grpass | ⊢ ( ( 𝑅  ∈  Grp  ∧  ( 𝑟  ∈  ( Base ‘ 𝑅 )  ∧  𝑠  ∈  ( Base ‘ 𝑅 )  ∧  𝑡  ∈  ( Base ‘ 𝑅 ) ) )  →  ( ( 𝑟 ( +g ‘ 𝑅 ) 𝑠 ) ( +g ‘ 𝑅 ) 𝑡 )  =  ( 𝑟 ( +g ‘ 𝑅 ) ( 𝑠 ( +g ‘ 𝑅 ) 𝑡 ) ) ) | 
						
							| 27 | 24 26 | sylan | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 )  ∧  𝑧  ∈  ( Base ‘ 𝑆 ) ) )  ∧  ( 𝑟  ∈  ( Base ‘ 𝑅 )  ∧  𝑠  ∈  ( Base ‘ 𝑅 )  ∧  𝑡  ∈  ( Base ‘ 𝑅 ) ) )  →  ( ( 𝑟 ( +g ‘ 𝑅 ) 𝑠 ) ( +g ‘ 𝑅 ) 𝑡 )  =  ( 𝑟 ( +g ‘ 𝑅 ) ( 𝑠 ( +g ‘ 𝑅 ) 𝑡 ) ) ) | 
						
							| 28 | 15 19 21 23 27 | caofass | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 )  ∧  𝑧  ∈  ( Base ‘ 𝑆 ) ) )  →  ( ( 𝑥  ∘f  ( +g ‘ 𝑅 ) 𝑦 )  ∘f  ( +g ‘ 𝑅 ) 𝑧 )  =  ( 𝑥  ∘f  ( +g ‘ 𝑅 ) ( 𝑦  ∘f  ( +g ‘ 𝑅 ) 𝑧 ) ) ) | 
						
							| 29 | 1 6 25 7 18 20 | psradd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 )  ∧  𝑧  ∈  ( Base ‘ 𝑆 ) ) )  →  ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 )  =  ( 𝑥  ∘f  ( +g ‘ 𝑅 ) 𝑦 ) ) | 
						
							| 30 | 29 | oveq1d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 )  ∧  𝑧  ∈  ( Base ‘ 𝑆 ) ) )  →  ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 )  ∘f  ( +g ‘ 𝑅 ) 𝑧 )  =  ( ( 𝑥  ∘f  ( +g ‘ 𝑅 ) 𝑦 )  ∘f  ( +g ‘ 𝑅 ) 𝑧 ) ) | 
						
							| 31 | 1 6 25 7 20 22 | psradd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 )  ∧  𝑧  ∈  ( Base ‘ 𝑆 ) ) )  →  ( 𝑦 ( +g ‘ 𝑆 ) 𝑧 )  =  ( 𝑦  ∘f  ( +g ‘ 𝑅 ) 𝑧 ) ) | 
						
							| 32 | 31 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 )  ∧  𝑧  ∈  ( Base ‘ 𝑆 ) ) )  →  ( 𝑥  ∘f  ( +g ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑆 ) 𝑧 ) )  =  ( 𝑥  ∘f  ( +g ‘ 𝑅 ) ( 𝑦  ∘f  ( +g ‘ 𝑅 ) 𝑧 ) ) ) | 
						
							| 33 | 28 30 32 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 )  ∧  𝑧  ∈  ( Base ‘ 𝑆 ) ) )  →  ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 )  ∘f  ( +g ‘ 𝑅 ) 𝑧 )  =  ( 𝑥  ∘f  ( +g ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑆 ) 𝑧 ) ) ) | 
						
							| 34 | 12 | 3adant3r3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 )  ∧  𝑧  ∈  ( Base ‘ 𝑆 ) ) )  →  ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 35 | 1 6 25 7 34 22 | psradd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 )  ∧  𝑧  ∈  ( Base ‘ 𝑆 ) ) )  →  ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( +g ‘ 𝑆 ) 𝑧 )  =  ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 )  ∘f  ( +g ‘ 𝑅 ) 𝑧 ) ) | 
						
							| 36 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 )  ∧  𝑧  ∈  ( Base ‘ 𝑆 ) ) )  →  𝑅  ∈  Mgm ) | 
						
							| 37 | 1 6 7 36 20 22 | psraddcl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 )  ∧  𝑧  ∈  ( Base ‘ 𝑆 ) ) )  →  ( 𝑦 ( +g ‘ 𝑆 ) 𝑧 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 38 | 1 6 25 7 18 37 | psradd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 )  ∧  𝑧  ∈  ( Base ‘ 𝑆 ) ) )  →  ( 𝑥 ( +g ‘ 𝑆 ) ( 𝑦 ( +g ‘ 𝑆 ) 𝑧 ) )  =  ( 𝑥  ∘f  ( +g ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑆 ) 𝑧 ) ) ) | 
						
							| 39 | 33 35 38 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 )  ∧  𝑧  ∈  ( Base ‘ 𝑆 ) ) )  →  ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( +g ‘ 𝑆 ) 𝑧 )  =  ( 𝑥 ( +g ‘ 𝑆 ) ( 𝑦 ( +g ‘ 𝑆 ) 𝑧 ) ) ) | 
						
							| 40 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 41 | 1 2 3 17 40 6 | psr0cl | ⊢ ( 𝜑  →  ( { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ×  { ( 0g ‘ 𝑅 ) } )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 42 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑆 ) )  →  𝐼  ∈  𝑉 ) | 
						
							| 43 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑆 ) )  →  𝑅  ∈  Grp ) | 
						
							| 44 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑆 ) )  →  𝑥  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 45 | 1 42 43 17 40 6 7 44 | psr0lid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑆 ) )  →  ( ( { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ×  { ( 0g ‘ 𝑅 ) } ) ( +g ‘ 𝑆 ) 𝑥 )  =  𝑥 ) | 
						
							| 46 |  | eqid | ⊢ ( invg ‘ 𝑅 )  =  ( invg ‘ 𝑅 ) | 
						
							| 47 | 1 42 43 17 46 6 44 | psrnegcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑆 ) )  →  ( ( invg ‘ 𝑅 )  ∘  𝑥 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 48 | 1 42 43 17 46 6 44 40 7 | psrlinv | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑆 ) )  →  ( ( ( invg ‘ 𝑅 )  ∘  𝑥 ) ( +g ‘ 𝑆 ) 𝑥 )  =  ( { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ×  { ( 0g ‘ 𝑅 ) } ) ) | 
						
							| 49 | 4 5 12 39 41 45 47 48 | isgrpd | ⊢ ( 𝜑  →  𝑆  ∈  Grp ) |