Step |
Hyp |
Ref |
Expression |
1 |
|
psrgrp.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
2 |
|
psrgrp.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
3 |
|
psrgrp.r |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
4 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) ) |
5 |
|
eqidd |
⊢ ( 𝜑 → ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
7 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
8 |
3
|
grpmgmd |
⊢ ( 𝜑 → 𝑅 ∈ Mgm ) |
9 |
8
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → 𝑅 ∈ Mgm ) |
10 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
11 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) ) |
12 |
1 6 7 9 10 11
|
psraddcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
13 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
14 |
13
|
rabex |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V |
15 |
14
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V ) |
16 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
17 |
|
eqid |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
18 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
19 |
1 16 17 6 18
|
psrelbas |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑥 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
20 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) ) |
21 |
1 16 17 6 20
|
psrelbas |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑦 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
22 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑧 ∈ ( Base ‘ 𝑆 ) ) |
23 |
1 16 17 6 22
|
psrelbas |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑧 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
24 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑅 ∈ Grp ) |
25 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
26 |
16 25
|
grpass |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑟 ∈ ( Base ‘ 𝑅 ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ∧ 𝑡 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑟 ( +g ‘ 𝑅 ) 𝑠 ) ( +g ‘ 𝑅 ) 𝑡 ) = ( 𝑟 ( +g ‘ 𝑅 ) ( 𝑠 ( +g ‘ 𝑅 ) 𝑡 ) ) ) |
27 |
24 26
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ 𝑅 ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ∧ 𝑡 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑟 ( +g ‘ 𝑅 ) 𝑠 ) ( +g ‘ 𝑅 ) 𝑡 ) = ( 𝑟 ( +g ‘ 𝑅 ) ( 𝑠 ( +g ‘ 𝑅 ) 𝑡 ) ) ) |
28 |
15 19 21 23 27
|
caofass |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝑥 ∘f ( +g ‘ 𝑅 ) 𝑦 ) ∘f ( +g ‘ 𝑅 ) 𝑧 ) = ( 𝑥 ∘f ( +g ‘ 𝑅 ) ( 𝑦 ∘f ( +g ‘ 𝑅 ) 𝑧 ) ) ) |
29 |
1 6 25 7 18 20
|
psradd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) = ( 𝑥 ∘f ( +g ‘ 𝑅 ) 𝑦 ) ) |
30 |
29
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∘f ( +g ‘ 𝑅 ) 𝑧 ) = ( ( 𝑥 ∘f ( +g ‘ 𝑅 ) 𝑦 ) ∘f ( +g ‘ 𝑅 ) 𝑧 ) ) |
31 |
1 6 25 7 20 22
|
psradd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑦 ( +g ‘ 𝑆 ) 𝑧 ) = ( 𝑦 ∘f ( +g ‘ 𝑅 ) 𝑧 ) ) |
32 |
31
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ∘f ( +g ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑆 ) 𝑧 ) ) = ( 𝑥 ∘f ( +g ‘ 𝑅 ) ( 𝑦 ∘f ( +g ‘ 𝑅 ) 𝑧 ) ) ) |
33 |
28 30 32
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∘f ( +g ‘ 𝑅 ) 𝑧 ) = ( 𝑥 ∘f ( +g ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑆 ) 𝑧 ) ) ) |
34 |
12
|
3adant3r3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
35 |
1 6 25 7 34 22
|
psradd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( +g ‘ 𝑆 ) 𝑧 ) = ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∘f ( +g ‘ 𝑅 ) 𝑧 ) ) |
36 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑅 ∈ Mgm ) |
37 |
1 6 7 36 20 22
|
psraddcl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑦 ( +g ‘ 𝑆 ) 𝑧 ) ∈ ( Base ‘ 𝑆 ) ) |
38 |
1 6 25 7 18 37
|
psradd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( +g ‘ 𝑆 ) ( 𝑦 ( +g ‘ 𝑆 ) 𝑧 ) ) = ( 𝑥 ∘f ( +g ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑆 ) 𝑧 ) ) ) |
39 |
33 35 38
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( +g ‘ 𝑆 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝑆 ) ( 𝑦 ( +g ‘ 𝑆 ) 𝑧 ) ) ) |
40 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
41 |
1 2 3 17 40 6
|
psr0cl |
⊢ ( 𝜑 → ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { ( 0g ‘ 𝑅 ) } ) ∈ ( Base ‘ 𝑆 ) ) |
42 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → 𝐼 ∈ 𝑉 ) |
43 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → 𝑅 ∈ Grp ) |
44 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
45 |
1 42 43 17 40 6 7 44
|
psr0lid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { ( 0g ‘ 𝑅 ) } ) ( +g ‘ 𝑆 ) 𝑥 ) = 𝑥 ) |
46 |
|
eqid |
⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) |
47 |
1 42 43 17 46 6 44
|
psrnegcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( ( invg ‘ 𝑅 ) ∘ 𝑥 ) ∈ ( Base ‘ 𝑆 ) ) |
48 |
1 42 43 17 46 6 44 40 7
|
psrlinv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( ( ( invg ‘ 𝑅 ) ∘ 𝑥 ) ( +g ‘ 𝑆 ) 𝑥 ) = ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { ( 0g ‘ 𝑅 ) } ) ) |
49 |
4 5 12 39 41 45 47 48
|
isgrpd |
⊢ ( 𝜑 → 𝑆 ∈ Grp ) |