Step |
Hyp |
Ref |
Expression |
1 |
|
psrring.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
2 |
|
psrring.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
3 |
|
psrring.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
4 |
|
psr1cl.d |
⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
5 |
|
psr1cl.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
6 |
|
psr1cl.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
7 |
|
psr1cl.u |
⊢ 𝑈 = ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) |
8 |
|
psr1cl.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
9 |
|
psrlidm.t |
⊢ · = ( .r ‘ 𝑆 ) |
10 |
|
psrlidm.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
12 |
1 2 3 4 5 6 7 8
|
psr1cl |
⊢ ( 𝜑 → 𝑈 ∈ 𝐵 ) |
13 |
1 8 9 3 12 10
|
psrmulcl |
⊢ ( 𝜑 → ( 𝑈 · 𝑋 ) ∈ 𝐵 ) |
14 |
1 11 4 8 13
|
psrelbas |
⊢ ( 𝜑 → ( 𝑈 · 𝑋 ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
15 |
14
|
ffnd |
⊢ ( 𝜑 → ( 𝑈 · 𝑋 ) Fn 𝐷 ) |
16 |
1 11 4 8 10
|
psrelbas |
⊢ ( 𝜑 → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
17 |
16
|
ffnd |
⊢ ( 𝜑 → 𝑋 Fn 𝐷 ) |
18 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
19 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝑈 ∈ 𝐵 ) |
20 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝑋 ∈ 𝐵 ) |
21 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝑦 ∈ 𝐷 ) |
22 |
1 8 18 9 4 19 20 21
|
psrmulval |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑈 · 𝑋 ) ‘ 𝑦 ) = ( 𝑅 Σg ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ) ) |
23 |
|
breq1 |
⊢ ( 𝑔 = ( 𝐼 × { 0 } ) → ( 𝑔 ∘r ≤ 𝑦 ↔ ( 𝐼 × { 0 } ) ∘r ≤ 𝑦 ) ) |
24 |
|
fconstmpt |
⊢ ( 𝐼 × { 0 } ) = ( 𝑥 ∈ 𝐼 ↦ 0 ) |
25 |
4
|
fczpsrbag |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝑥 ∈ 𝐼 ↦ 0 ) ∈ 𝐷 ) |
26 |
2 25
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 0 ) ∈ 𝐷 ) |
27 |
24 26
|
eqeltrid |
⊢ ( 𝜑 → ( 𝐼 × { 0 } ) ∈ 𝐷 ) |
28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝐼 × { 0 } ) ∈ 𝐷 ) |
29 |
4
|
psrbagf |
⊢ ( 𝑦 ∈ 𝐷 → 𝑦 : 𝐼 ⟶ ℕ0 ) |
30 |
29
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝑦 : 𝐼 ⟶ ℕ0 ) |
31 |
30
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ‘ 𝑥 ) ∈ ℕ0 ) |
32 |
31
|
nn0ge0d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐼 ) → 0 ≤ ( 𝑦 ‘ 𝑥 ) ) |
33 |
32
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ∀ 𝑥 ∈ 𝐼 0 ≤ ( 𝑦 ‘ 𝑥 ) ) |
34 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
35 |
34
|
fconst6 |
⊢ ( 𝐼 × { 0 } ) : 𝐼 ⟶ ℕ0 |
36 |
|
ffn |
⊢ ( ( 𝐼 × { 0 } ) : 𝐼 ⟶ ℕ0 → ( 𝐼 × { 0 } ) Fn 𝐼 ) |
37 |
35 36
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝐼 × { 0 } ) Fn 𝐼 ) |
38 |
30
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝑦 Fn 𝐼 ) |
39 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝐼 ∈ 𝑉 ) |
40 |
|
inidm |
⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 |
41 |
34
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 0 ∈ ℕ0 ) |
42 |
|
fvconst2g |
⊢ ( ( 0 ∈ ℕ0 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐼 × { 0 } ) ‘ 𝑥 ) = 0 ) |
43 |
41 42
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐼 × { 0 } ) ‘ 𝑥 ) = 0 ) |
44 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ‘ 𝑥 ) = ( 𝑦 ‘ 𝑥 ) ) |
45 |
37 38 39 39 40 43 44
|
ofrfval |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝐼 × { 0 } ) ∘r ≤ 𝑦 ↔ ∀ 𝑥 ∈ 𝐼 0 ≤ ( 𝑦 ‘ 𝑥 ) ) ) |
46 |
33 45
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝐼 × { 0 } ) ∘r ≤ 𝑦 ) |
47 |
23 28 46
|
elrabd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝐼 × { 0 } ) ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) |
48 |
47
|
snssd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → { ( 𝐼 × { 0 } ) } ⊆ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) |
49 |
48
|
resmptd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ↾ { ( 𝐼 × { 0 } ) } ) = ( 𝑧 ∈ { ( 𝐼 × { 0 } ) } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ) |
50 |
49
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑅 Σg ( ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ↾ { ( 𝐼 × { 0 } ) } ) ) = ( 𝑅 Σg ( 𝑧 ∈ { ( 𝐼 × { 0 } ) } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ) ) |
51 |
|
ringcmn |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ CMnd ) |
52 |
3 51
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝑅 ∈ CMnd ) |
54 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
55 |
4 54
|
rab2ex |
⊢ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∈ V |
56 |
55
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∈ V ) |
57 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → 𝑅 ∈ Ring ) |
58 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) |
59 |
|
breq1 |
⊢ ( 𝑔 = 𝑧 → ( 𝑔 ∘r ≤ 𝑦 ↔ 𝑧 ∘r ≤ 𝑦 ) ) |
60 |
59
|
elrab |
⊢ ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↔ ( 𝑧 ∈ 𝐷 ∧ 𝑧 ∘r ≤ 𝑦 ) ) |
61 |
58 60
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → ( 𝑧 ∈ 𝐷 ∧ 𝑧 ∘r ≤ 𝑦 ) ) |
62 |
61
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → 𝑧 ∈ 𝐷 ) |
63 |
1 11 4 8 19
|
psrelbas |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝑈 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
64 |
63
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝐷 ) → ( 𝑈 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) |
65 |
62 64
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → ( 𝑈 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) |
66 |
16
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
67 |
21
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → 𝑦 ∈ 𝐷 ) |
68 |
4
|
psrbagf |
⊢ ( 𝑧 ∈ 𝐷 → 𝑧 : 𝐼 ⟶ ℕ0 ) |
69 |
62 68
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → 𝑧 : 𝐼 ⟶ ℕ0 ) |
70 |
61
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → 𝑧 ∘r ≤ 𝑦 ) |
71 |
4
|
psrbagcon |
⊢ ( ( 𝑦 ∈ 𝐷 ∧ 𝑧 : 𝐼 ⟶ ℕ0 ∧ 𝑧 ∘r ≤ 𝑦 ) → ( ( 𝑦 ∘f − 𝑧 ) ∈ 𝐷 ∧ ( 𝑦 ∘f − 𝑧 ) ∘r ≤ 𝑦 ) ) |
72 |
67 69 70 71
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → ( ( 𝑦 ∘f − 𝑧 ) ∈ 𝐷 ∧ ( 𝑦 ∘f − 𝑧 ) ∘r ≤ 𝑦 ) ) |
73 |
72
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → ( 𝑦 ∘f − 𝑧 ) ∈ 𝐷 ) |
74 |
66 73
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ∈ ( Base ‘ 𝑅 ) ) |
75 |
11 18
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
76 |
57 65 74 75
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) → ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
77 |
76
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) : { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ⟶ ( Base ‘ 𝑅 ) ) |
78 |
|
eldifi |
⊢ ( 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { ( 𝐼 × { 0 } ) } ) → 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ) |
79 |
78 61
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { ( 𝐼 × { 0 } ) } ) ) → ( 𝑧 ∈ 𝐷 ∧ 𝑧 ∘r ≤ 𝑦 ) ) |
80 |
79
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { ( 𝐼 × { 0 } ) } ) ) → 𝑧 ∈ 𝐷 ) |
81 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = ( 𝐼 × { 0 } ) ↔ 𝑧 = ( 𝐼 × { 0 } ) ) ) |
82 |
81
|
ifbid |
⊢ ( 𝑥 = 𝑧 → if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) = if ( 𝑧 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) |
83 |
6
|
fvexi |
⊢ 1 ∈ V |
84 |
5
|
fvexi |
⊢ 0 ∈ V |
85 |
83 84
|
ifex |
⊢ if ( 𝑧 = ( 𝐼 × { 0 } ) , 1 , 0 ) ∈ V |
86 |
82 7 85
|
fvmpt |
⊢ ( 𝑧 ∈ 𝐷 → ( 𝑈 ‘ 𝑧 ) = if ( 𝑧 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) |
87 |
80 86
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { ( 𝐼 × { 0 } ) } ) ) → ( 𝑈 ‘ 𝑧 ) = if ( 𝑧 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) |
88 |
|
eldifn |
⊢ ( 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { ( 𝐼 × { 0 } ) } ) → ¬ 𝑧 ∈ { ( 𝐼 × { 0 } ) } ) |
89 |
88
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { ( 𝐼 × { 0 } ) } ) ) → ¬ 𝑧 ∈ { ( 𝐼 × { 0 } ) } ) |
90 |
|
velsn |
⊢ ( 𝑧 ∈ { ( 𝐼 × { 0 } ) } ↔ 𝑧 = ( 𝐼 × { 0 } ) ) |
91 |
89 90
|
sylnib |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { ( 𝐼 × { 0 } ) } ) ) → ¬ 𝑧 = ( 𝐼 × { 0 } ) ) |
92 |
91
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { ( 𝐼 × { 0 } ) } ) ) → if ( 𝑧 = ( 𝐼 × { 0 } ) , 1 , 0 ) = 0 ) |
93 |
87 92
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { ( 𝐼 × { 0 } ) } ) ) → ( 𝑈 ‘ 𝑧 ) = 0 ) |
94 |
93
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { ( 𝐼 × { 0 } ) } ) ) → ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) = ( 0 ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) |
95 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { ( 𝐼 × { 0 } ) } ) ) → 𝑅 ∈ Ring ) |
96 |
78 74
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { ( 𝐼 × { 0 } ) } ) ) → ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ∈ ( Base ‘ 𝑅 ) ) |
97 |
11 18 5
|
ringlz |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( 0 ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) = 0 ) |
98 |
95 96 97
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { ( 𝐼 × { 0 } ) } ) ) → ( 0 ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) = 0 ) |
99 |
94 98
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ∖ { ( 𝐼 × { 0 } ) } ) ) → ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) = 0 ) |
100 |
99 56
|
suppss2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) supp 0 ) ⊆ { ( 𝐼 × { 0 } ) } ) |
101 |
4 54
|
rabex2 |
⊢ 𝐷 ∈ V |
102 |
101
|
mptrabex |
⊢ ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ∈ V |
103 |
102
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ∈ V ) |
104 |
|
funmpt |
⊢ Fun ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) |
105 |
104
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → Fun ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ) |
106 |
84
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 0 ∈ V ) |
107 |
|
snfi |
⊢ { ( 𝐼 × { 0 } ) } ∈ Fin |
108 |
107
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → { ( 𝐼 × { 0 } ) } ∈ Fin ) |
109 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ∈ V ∧ Fun ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ∧ 0 ∈ V ) ∧ ( { ( 𝐼 × { 0 } ) } ∈ Fin ∧ ( ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) supp 0 ) ⊆ { ( 𝐼 × { 0 } ) } ) ) → ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) finSupp 0 ) |
110 |
103 105 106 108 100 109
|
syl32anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) finSupp 0 ) |
111 |
11 5 53 56 77 100 110
|
gsumres |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑅 Σg ( ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ↾ { ( 𝐼 × { 0 } ) } ) ) = ( 𝑅 Σg ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ) ) |
112 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝑅 ∈ Ring ) |
113 |
|
ringmnd |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) |
114 |
112 113
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝑅 ∈ Mnd ) |
115 |
|
iftrue |
⊢ ( 𝑥 = ( 𝐼 × { 0 } ) → if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) = 1 ) |
116 |
115 7 83
|
fvmpt |
⊢ ( ( 𝐼 × { 0 } ) ∈ 𝐷 → ( 𝑈 ‘ ( 𝐼 × { 0 } ) ) = 1 ) |
117 |
28 116
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑈 ‘ ( 𝐼 × { 0 } ) ) = 1 ) |
118 |
|
nn0cn |
⊢ ( 𝑧 ∈ ℕ0 → 𝑧 ∈ ℂ ) |
119 |
118
|
subid1d |
⊢ ( 𝑧 ∈ ℕ0 → ( 𝑧 − 0 ) = 𝑧 ) |
120 |
119
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ ℕ0 ) → ( 𝑧 − 0 ) = 𝑧 ) |
121 |
39 30 41 120
|
caofid0r |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑦 ∘f − ( 𝐼 × { 0 } ) ) = 𝑦 ) |
122 |
121
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑋 ‘ ( 𝑦 ∘f − ( 𝐼 × { 0 } ) ) ) = ( 𝑋 ‘ 𝑦 ) ) |
123 |
117 122
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑈 ‘ ( 𝐼 × { 0 } ) ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − ( 𝐼 × { 0 } ) ) ) ) = ( 1 ( .r ‘ 𝑅 ) ( 𝑋 ‘ 𝑦 ) ) ) |
124 |
16
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑋 ‘ 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
125 |
11 18 6
|
ringlidm |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ‘ 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) → ( 1 ( .r ‘ 𝑅 ) ( 𝑋 ‘ 𝑦 ) ) = ( 𝑋 ‘ 𝑦 ) ) |
126 |
112 124 125
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 1 ( .r ‘ 𝑅 ) ( 𝑋 ‘ 𝑦 ) ) = ( 𝑋 ‘ 𝑦 ) ) |
127 |
123 126
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑈 ‘ ( 𝐼 × { 0 } ) ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − ( 𝐼 × { 0 } ) ) ) ) = ( 𝑋 ‘ 𝑦 ) ) |
128 |
127 124
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑈 ‘ ( 𝐼 × { 0 } ) ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − ( 𝐼 × { 0 } ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
129 |
|
fveq2 |
⊢ ( 𝑧 = ( 𝐼 × { 0 } ) → ( 𝑈 ‘ 𝑧 ) = ( 𝑈 ‘ ( 𝐼 × { 0 } ) ) ) |
130 |
|
oveq2 |
⊢ ( 𝑧 = ( 𝐼 × { 0 } ) → ( 𝑦 ∘f − 𝑧 ) = ( 𝑦 ∘f − ( 𝐼 × { 0 } ) ) ) |
131 |
130
|
fveq2d |
⊢ ( 𝑧 = ( 𝐼 × { 0 } ) → ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) = ( 𝑋 ‘ ( 𝑦 ∘f − ( 𝐼 × { 0 } ) ) ) ) |
132 |
129 131
|
oveq12d |
⊢ ( 𝑧 = ( 𝐼 × { 0 } ) → ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) = ( ( 𝑈 ‘ ( 𝐼 × { 0 } ) ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − ( 𝐼 × { 0 } ) ) ) ) ) |
133 |
11 132
|
gsumsn |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( 𝐼 × { 0 } ) ∈ 𝐷 ∧ ( ( 𝑈 ‘ ( 𝐼 × { 0 } ) ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − ( 𝐼 × { 0 } ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) → ( 𝑅 Σg ( 𝑧 ∈ { ( 𝐼 × { 0 } ) } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ) = ( ( 𝑈 ‘ ( 𝐼 × { 0 } ) ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − ( 𝐼 × { 0 } ) ) ) ) ) |
134 |
114 28 128 133
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑅 Σg ( 𝑧 ∈ { ( 𝐼 × { 0 } ) } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ) = ( ( 𝑈 ‘ ( 𝐼 × { 0 } ) ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − ( 𝐼 × { 0 } ) ) ) ) ) |
135 |
50 111 134
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑅 Σg ( 𝑧 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦 } ↦ ( ( 𝑈 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − 𝑧 ) ) ) ) ) = ( ( 𝑈 ‘ ( 𝐼 × { 0 } ) ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑦 ∘f − ( 𝐼 × { 0 } ) ) ) ) ) |
136 |
22 135 127
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑈 · 𝑋 ) ‘ 𝑦 ) = ( 𝑋 ‘ 𝑦 ) ) |
137 |
15 17 136
|
eqfnfvd |
⊢ ( 𝜑 → ( 𝑈 · 𝑋 ) = 𝑋 ) |