| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psrgrp.s | ⊢ 𝑆  =  ( 𝐼  mPwSer  𝑅 ) | 
						
							| 2 |  | psrgrp.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 3 |  | psrgrp.r | ⊢ ( 𝜑  →  𝑅  ∈  Grp ) | 
						
							| 4 |  | psrnegcl.d | ⊢ 𝐷  =  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 5 |  | psrnegcl.i | ⊢ 𝑁  =  ( invg ‘ 𝑅 ) | 
						
							| 6 |  | psrnegcl.b | ⊢ 𝐵  =  ( Base ‘ 𝑆 ) | 
						
							| 7 |  | psrnegcl.z | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 8 |  | psrlinv.o | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 9 |  | psrlinv.p | ⊢  +   =  ( +g ‘ 𝑆 ) | 
						
							| 10 |  | ovex | ⊢ ( ℕ0  ↑m  𝐼 )  ∈  V | 
						
							| 11 | 4 10 | rabex2 | ⊢ 𝐷  ∈  V | 
						
							| 12 | 11 | a1i | ⊢ ( 𝜑  →  𝐷  ∈  V ) | 
						
							| 13 |  | fvexd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( 𝑁 ‘ ( 𝑋 ‘ 𝑥 ) )  ∈  V ) | 
						
							| 14 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 15 | 1 14 4 6 7 | psrelbas | ⊢ ( 𝜑  →  𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 16 | 15 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( 𝑋 ‘ 𝑥 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 17 | 15 | feqmptd | ⊢ ( 𝜑  →  𝑋  =  ( 𝑥  ∈  𝐷  ↦  ( 𝑋 ‘ 𝑥 ) ) ) | 
						
							| 18 | 14 5 3 | grpinvf1o | ⊢ ( 𝜑  →  𝑁 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑅 ) ) | 
						
							| 19 |  | f1of | ⊢ ( 𝑁 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑅 )  →  𝑁 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 20 | 18 19 | syl | ⊢ ( 𝜑  →  𝑁 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 21 | 20 | feqmptd | ⊢ ( 𝜑  →  𝑁  =  ( 𝑦  ∈  ( Base ‘ 𝑅 )  ↦  ( 𝑁 ‘ 𝑦 ) ) ) | 
						
							| 22 |  | fveq2 | ⊢ ( 𝑦  =  ( 𝑋 ‘ 𝑥 )  →  ( 𝑁 ‘ 𝑦 )  =  ( 𝑁 ‘ ( 𝑋 ‘ 𝑥 ) ) ) | 
						
							| 23 | 16 17 21 22 | fmptco | ⊢ ( 𝜑  →  ( 𝑁  ∘  𝑋 )  =  ( 𝑥  ∈  𝐷  ↦  ( 𝑁 ‘ ( 𝑋 ‘ 𝑥 ) ) ) ) | 
						
							| 24 | 12 13 16 23 17 | offval2 | ⊢ ( 𝜑  →  ( ( 𝑁  ∘  𝑋 )  ∘f  ( +g ‘ 𝑅 ) 𝑋 )  =  ( 𝑥  ∈  𝐷  ↦  ( ( 𝑁 ‘ ( 𝑋 ‘ 𝑥 ) ) ( +g ‘ 𝑅 ) ( 𝑋 ‘ 𝑥 ) ) ) ) | 
						
							| 25 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 26 | 1 2 3 4 5 6 7 | psrnegcl | ⊢ ( 𝜑  →  ( 𝑁  ∘  𝑋 )  ∈  𝐵 ) | 
						
							| 27 | 1 6 25 9 26 7 | psradd | ⊢ ( 𝜑  →  ( ( 𝑁  ∘  𝑋 )  +  𝑋 )  =  ( ( 𝑁  ∘  𝑋 )  ∘f  ( +g ‘ 𝑅 ) 𝑋 ) ) | 
						
							| 28 |  | fconstmpt | ⊢ ( 𝐷  ×  {  0  } )  =  ( 𝑥  ∈  𝐷  ↦   0  ) | 
						
							| 29 | 14 25 8 5 | grplinv | ⊢ ( ( 𝑅  ∈  Grp  ∧  ( 𝑋 ‘ 𝑥 )  ∈  ( Base ‘ 𝑅 ) )  →  ( ( 𝑁 ‘ ( 𝑋 ‘ 𝑥 ) ) ( +g ‘ 𝑅 ) ( 𝑋 ‘ 𝑥 ) )  =   0  ) | 
						
							| 30 | 3 16 29 | syl2an2r | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( ( 𝑁 ‘ ( 𝑋 ‘ 𝑥 ) ) ( +g ‘ 𝑅 ) ( 𝑋 ‘ 𝑥 ) )  =   0  ) | 
						
							| 31 | 30 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐷  ↦  ( ( 𝑁 ‘ ( 𝑋 ‘ 𝑥 ) ) ( +g ‘ 𝑅 ) ( 𝑋 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝐷  ↦   0  ) ) | 
						
							| 32 | 28 31 | eqtr4id | ⊢ ( 𝜑  →  ( 𝐷  ×  {  0  } )  =  ( 𝑥  ∈  𝐷  ↦  ( ( 𝑁 ‘ ( 𝑋 ‘ 𝑥 ) ) ( +g ‘ 𝑅 ) ( 𝑋 ‘ 𝑥 ) ) ) ) | 
						
							| 33 | 24 27 32 | 3eqtr4d | ⊢ ( 𝜑  →  ( ( 𝑁  ∘  𝑋 )  +  𝑋 )  =  ( 𝐷  ×  {  0  } ) ) |