| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psrring.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
| 2 |
|
psrring.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 3 |
|
psrring.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 4 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) ) |
| 5 |
|
eqidd |
⊢ ( 𝜑 → ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) ) |
| 6 |
1 2 3
|
psrsca |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑆 ) ) |
| 7 |
|
eqidd |
⊢ ( 𝜑 → ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑆 ) ) |
| 8 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) ) |
| 9 |
|
eqidd |
⊢ ( 𝜑 → ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) ) |
| 10 |
|
eqidd |
⊢ ( 𝜑 → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) ) |
| 11 |
|
eqidd |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) ) |
| 12 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
| 13 |
3 12
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 14 |
1 2 13
|
psrgrp |
⊢ ( 𝜑 → 𝑆 ∈ Grp ) |
| 15 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑆 ) |
| 16 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 17 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 18 |
3
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → 𝑅 ∈ Ring ) |
| 19 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 20 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) ) |
| 21 |
1 15 16 17 18 19 20
|
psrvscacl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
| 22 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
| 23 |
22
|
rabex |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V |
| 24 |
23
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V ) |
| 25 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 26 |
|
fconst6g |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑅 ) → ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 27 |
25 26
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 28 |
|
eqid |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
| 29 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) ) |
| 30 |
1 16 28 17 29
|
psrelbas |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑦 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 31 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑧 ∈ ( Base ‘ 𝑆 ) ) |
| 32 |
1 16 28 17 31
|
psrelbas |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑧 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 33 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑅 ∈ Ring ) |
| 34 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 35 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 36 |
16 34 35
|
ringdi |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑟 ∈ ( Base ‘ 𝑅 ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ∧ 𝑡 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑟 ( .r ‘ 𝑅 ) ( 𝑠 ( +g ‘ 𝑅 ) 𝑡 ) ) = ( ( 𝑟 ( .r ‘ 𝑅 ) 𝑠 ) ( +g ‘ 𝑅 ) ( 𝑟 ( .r ‘ 𝑅 ) 𝑡 ) ) ) |
| 37 |
33 36
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ 𝑅 ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ∧ 𝑡 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑟 ( .r ‘ 𝑅 ) ( 𝑠 ( +g ‘ 𝑅 ) 𝑡 ) ) = ( ( 𝑟 ( .r ‘ 𝑅 ) 𝑠 ) ( +g ‘ 𝑅 ) ( 𝑟 ( .r ‘ 𝑅 ) 𝑡 ) ) ) |
| 38 |
24 27 30 32 37
|
caofdi |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) ( 𝑦 ∘f ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑦 ) ∘f ( +g ‘ 𝑅 ) ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) ) ) |
| 39 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
| 40 |
1 17 34 39 29 31
|
psradd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑦 ( +g ‘ 𝑆 ) 𝑧 ) = ( 𝑦 ∘f ( +g ‘ 𝑅 ) 𝑧 ) ) |
| 41 |
40
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑆 ) 𝑧 ) ) = ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) ( 𝑦 ∘f ( +g ‘ 𝑅 ) 𝑧 ) ) ) |
| 42 |
1 15 16 17 35 28 25 29
|
psrvsca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) = ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑦 ) ) |
| 43 |
1 15 16 17 35 28 25 31
|
psrvsca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) = ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) ) |
| 44 |
42 43
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∘f ( +g ‘ 𝑅 ) ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ) = ( ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑦 ) ∘f ( +g ‘ 𝑅 ) ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) ) ) |
| 45 |
38 41 44
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑆 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∘f ( +g ‘ 𝑅 ) ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ) ) |
| 46 |
13
|
grpmgmd |
⊢ ( 𝜑 → 𝑅 ∈ Mgm ) |
| 47 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑅 ∈ Mgm ) |
| 48 |
1 17 39 47 29 31
|
psraddcl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑦 ( +g ‘ 𝑆 ) 𝑧 ) ∈ ( Base ‘ 𝑆 ) ) |
| 49 |
1 15 16 17 35 28 25 48
|
psrvsca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑆 ) ( 𝑦 ( +g ‘ 𝑆 ) 𝑧 ) ) = ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑆 ) 𝑧 ) ) ) |
| 50 |
21
|
3adant3r3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
| 51 |
1 15 16 17 33 25 31
|
psrvscacl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ∈ ( Base ‘ 𝑆 ) ) |
| 52 |
1 17 34 39 50 51
|
psradd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ( +g ‘ 𝑆 ) ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∘f ( +g ‘ 𝑅 ) ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ) ) |
| 53 |
45 49 52
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑆 ) ( 𝑦 ( +g ‘ 𝑆 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ( +g ‘ 𝑆 ) ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ) ) |
| 54 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 55 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑧 ∈ ( Base ‘ 𝑆 ) ) |
| 56 |
1 15 16 17 35 28 54 55
|
psrvsca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) = ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) ) |
| 57 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
| 58 |
1 15 16 17 35 28 57 55
|
psrvsca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑦 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) = ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑦 } ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) ) |
| 59 |
56 58
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ∘f ( +g ‘ 𝑅 ) ( 𝑦 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ) = ( ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) ∘f ( +g ‘ 𝑅 ) ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑦 } ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) ) ) |
| 60 |
23
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V ) |
| 61 |
1 16 28 17 55
|
psrelbas |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑧 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 62 |
54 26
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 63 |
|
fconst6g |
⊢ ( 𝑦 ∈ ( Base ‘ 𝑅 ) → ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑦 } ) : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 64 |
57 63
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑦 } ) : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 65 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑅 ∈ Ring ) |
| 66 |
16 34 35
|
ringdir |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑟 ∈ ( Base ‘ 𝑅 ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ∧ 𝑡 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑟 ( +g ‘ 𝑅 ) 𝑠 ) ( .r ‘ 𝑅 ) 𝑡 ) = ( ( 𝑟 ( .r ‘ 𝑅 ) 𝑡 ) ( +g ‘ 𝑅 ) ( 𝑠 ( .r ‘ 𝑅 ) 𝑡 ) ) ) |
| 67 |
65 66
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ 𝑅 ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ∧ 𝑡 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑟 ( +g ‘ 𝑅 ) 𝑠 ) ( .r ‘ 𝑅 ) 𝑡 ) = ( ( 𝑟 ( .r ‘ 𝑅 ) 𝑡 ) ( +g ‘ 𝑅 ) ( 𝑠 ( .r ‘ 𝑅 ) 𝑡 ) ) ) |
| 68 |
60 61 62 64 67
|
caofdir |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( +g ‘ 𝑅 ) ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑦 } ) ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) = ( ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) ∘f ( +g ‘ 𝑅 ) ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑦 } ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) ) ) |
| 69 |
60 54 57
|
ofc12 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( +g ‘ 𝑅 ) ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑦 } ) ) = ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) } ) ) |
| 70 |
69
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( +g ‘ 𝑅 ) ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑦 } ) ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) = ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) } ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) ) |
| 71 |
59 68 70
|
3eqtr2rd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) } ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ∘f ( +g ‘ 𝑅 ) ( 𝑦 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ) ) |
| 72 |
16 34
|
ringacl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 73 |
65 54 57 72
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 74 |
1 15 16 17 35 28 73 55
|
psrvsca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( ·𝑠 ‘ 𝑆 ) 𝑧 ) = ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) } ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) ) |
| 75 |
1 15 16 17 65 54 55
|
psrvscacl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ∈ ( Base ‘ 𝑆 ) ) |
| 76 |
1 15 16 17 65 57 55
|
psrvscacl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑦 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ∈ ( Base ‘ 𝑆 ) ) |
| 77 |
1 17 34 39 75 76
|
psradd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ( +g ‘ 𝑆 ) ( 𝑦 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ∘f ( +g ‘ 𝑅 ) ( 𝑦 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ) ) |
| 78 |
71 74 77
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( ·𝑠 ‘ 𝑆 ) 𝑧 ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ( +g ‘ 𝑆 ) ( 𝑦 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ) ) |
| 79 |
58
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) ( 𝑦 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ) = ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑦 } ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) ) ) |
| 80 |
16 35
|
ringass |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑟 ∈ ( Base ‘ 𝑅 ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ∧ 𝑡 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑟 ( .r ‘ 𝑅 ) 𝑠 ) ( .r ‘ 𝑅 ) 𝑡 ) = ( 𝑟 ( .r ‘ 𝑅 ) ( 𝑠 ( .r ‘ 𝑅 ) 𝑡 ) ) ) |
| 81 |
65 80
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ 𝑅 ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ∧ 𝑡 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑟 ( .r ‘ 𝑅 ) 𝑠 ) ( .r ‘ 𝑅 ) 𝑡 ) = ( 𝑟 ( .r ‘ 𝑅 ) ( 𝑠 ( .r ‘ 𝑅 ) 𝑡 ) ) ) |
| 82 |
60 62 64 61 81
|
caofass |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑦 } ) ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) = ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑦 } ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) ) ) |
| 83 |
60 54 57
|
ofc12 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑦 } ) ) = ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) } ) ) |
| 84 |
83
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑦 } ) ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) = ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) } ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) ) |
| 85 |
79 82 84
|
3eqtr2rd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) } ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) = ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) ( 𝑦 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ) ) |
| 86 |
16 35
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 87 |
65 54 57 86
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 88 |
1 15 16 17 35 28 87 55
|
psrvsca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( ·𝑠 ‘ 𝑆 ) 𝑧 ) = ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) } ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) ) |
| 89 |
1 15 16 17 35 28 54 76
|
psrvsca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑆 ) ( 𝑦 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ) = ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) ( 𝑦 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ) ) |
| 90 |
85 88 89
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( ·𝑠 ‘ 𝑆 ) 𝑧 ) = ( 𝑥 ( ·𝑠 ‘ 𝑆 ) ( 𝑦 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ) ) |
| 91 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → 𝑅 ∈ Ring ) |
| 92 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 93 |
16 92
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 94 |
91 93
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 95 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
| 96 |
1 15 16 17 35 28 94 95
|
psrvsca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( ( 1r ‘ 𝑅 ) ( ·𝑠 ‘ 𝑆 ) 𝑥 ) = ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { ( 1r ‘ 𝑅 ) } ) ∘f ( .r ‘ 𝑅 ) 𝑥 ) ) |
| 97 |
23
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V ) |
| 98 |
1 16 28 17 95
|
psrelbas |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → 𝑥 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 99 |
16 35 92
|
ringlidm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑟 ) = 𝑟 ) |
| 100 |
91 99
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑟 ) = 𝑟 ) |
| 101 |
97 98 94 100
|
caofid0l |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { ( 1r ‘ 𝑅 ) } ) ∘f ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ) |
| 102 |
96 101
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( ( 1r ‘ 𝑅 ) ( ·𝑠 ‘ 𝑆 ) 𝑥 ) = 𝑥 ) |
| 103 |
4 5 6 7 8 9 10 11 3 14 21 53 78 90 102
|
islmodd |
⊢ ( 𝜑 → 𝑆 ∈ LMod ) |