Step |
Hyp |
Ref |
Expression |
1 |
|
psrmulr.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
2 |
|
psrmulr.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
3 |
|
psrmulr.m |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
psrmulr.t |
⊢ ∙ = ( .r ‘ 𝑆 ) |
5 |
|
psrmulr.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
6 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
7 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
8 |
|
eqid |
⊢ ( TopOpen ‘ 𝑅 ) = ( TopOpen ‘ 𝑅 ) |
9 |
|
simpl |
⊢ ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → 𝐼 ∈ V ) |
10 |
1 6 5 2 9
|
psrbas |
⊢ ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → 𝐵 = ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ) |
11 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
12 |
1 2 7 11
|
psrplusg |
⊢ ( +g ‘ 𝑆 ) = ( ∘f ( +g ‘ 𝑅 ) ↾ ( 𝐵 × 𝐵 ) ) |
13 |
|
eqid |
⊢ ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) |
14 |
|
eqid |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑓 ∈ 𝐵 ↦ ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑓 ∈ 𝐵 ↦ ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) ) |
15 |
|
eqidd |
⊢ ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) = ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) ) |
16 |
|
simpr |
⊢ ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → 𝑅 ∈ V ) |
17 |
1 6 7 3 8 5 10 12 13 14 15 9 16
|
psrval |
⊢ ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → 𝑆 = ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑆 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑓 ∈ 𝐵 ↦ ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) ) |
18 |
17
|
fveq2d |
⊢ ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( .r ‘ 𝑆 ) = ( .r ‘ ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑆 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑓 ∈ 𝐵 ↦ ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) ) ) |
19 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
20 |
19 19
|
mpoex |
⊢ ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) ∈ V |
21 |
|
psrvalstr |
⊢ ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑆 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑓 ∈ 𝐵 ↦ ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) Struct 〈 1 , 9 〉 |
22 |
|
mulrid |
⊢ .r = Slot ( .r ‘ ndx ) |
23 |
|
snsstp3 |
⊢ { 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ⊆ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑆 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } |
24 |
|
ssun1 |
⊢ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑆 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ⊆ ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑆 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑓 ∈ 𝐵 ↦ ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) |
25 |
23 24
|
sstri |
⊢ { 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ⊆ ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑆 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑓 ∈ 𝐵 ↦ ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) |
26 |
21 22 25
|
strfv |
⊢ ( ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) ∈ V → ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) = ( .r ‘ ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑆 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑓 ∈ 𝐵 ↦ ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) ) ) |
27 |
20 26
|
ax-mp |
⊢ ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) = ( .r ‘ ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑆 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑓 ∈ 𝐵 ↦ ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) ) |
28 |
18 4 27
|
3eqtr4g |
⊢ ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ∙ = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) ) |
29 |
22
|
str0 |
⊢ ∅ = ( .r ‘ ∅ ) |
30 |
29
|
eqcomi |
⊢ ( .r ‘ ∅ ) = ∅ |
31 |
|
reldmpsr |
⊢ Rel dom mPwSer |
32 |
31
|
ovprc |
⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐼 mPwSer 𝑅 ) = ∅ ) |
33 |
1 32
|
eqtrid |
⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → 𝑆 = ∅ ) |
34 |
33
|
fveq2d |
⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( .r ‘ 𝑆 ) = ( .r ‘ ∅ ) ) |
35 |
4 34
|
eqtrid |
⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ∙ = ( .r ‘ ∅ ) ) |
36 |
33
|
fveq2d |
⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( Base ‘ 𝑆 ) = ( Base ‘ ∅ ) ) |
37 |
|
base0 |
⊢ ∅ = ( Base ‘ ∅ ) |
38 |
36 2 37
|
3eqtr4g |
⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → 𝐵 = ∅ ) |
39 |
38
|
olcd |
⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐵 = ∅ ∨ 𝐵 = ∅ ) ) |
40 |
|
0mpo0 |
⊢ ( ( 𝐵 = ∅ ∨ 𝐵 = ∅ ) → ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) = ∅ ) |
41 |
39 40
|
syl |
⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) = ∅ ) |
42 |
30 35 41
|
3eqtr4a |
⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ∙ = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) ) |
43 |
28 42
|
pm2.61i |
⊢ ∙ = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) |