Step |
Hyp |
Ref |
Expression |
1 |
|
psrmulr.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
2 |
|
psrmulr.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
3 |
|
psrmulr.m |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
psrmulr.t |
⊢ ∙ = ( .r ‘ 𝑆 ) |
5 |
|
psrmulr.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
6 |
|
psrmulfval.i |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
7 |
|
psrmulfval.r |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
8 |
|
psrmulval.r |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
9 |
1 2 3 4 5 6 7
|
psrmulfval |
⊢ ( 𝜑 → ( 𝐹 ∙ 𝐺 ) = ( 𝑥 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑘 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) ) ) |
10 |
9
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐹 ∙ 𝐺 ) ‘ 𝑋 ) = ( ( 𝑥 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑘 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) ) ‘ 𝑋 ) ) |
11 |
|
breq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑦 ∘r ≤ 𝑥 ↔ 𝑦 ∘r ≤ 𝑋 ) ) |
12 |
11
|
rabbidv |
⊢ ( 𝑥 = 𝑋 → { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥 } = { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑋 } ) |
13 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝐺 ‘ ( 𝑥 ∘f − 𝑘 ) ) = ( 𝐺 ‘ ( 𝑋 ∘f − 𝑘 ) ) ) |
14 |
13
|
oveq2d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) = ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ ( 𝑋 ∘f − 𝑘 ) ) ) ) |
15 |
12 14
|
mpteq12dv |
⊢ ( 𝑥 = 𝑋 → ( 𝑘 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) = ( 𝑘 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑋 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ ( 𝑋 ∘f − 𝑘 ) ) ) ) ) |
16 |
15
|
oveq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑅 Σg ( 𝑘 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑋 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ ( 𝑋 ∘f − 𝑘 ) ) ) ) ) ) |
17 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑘 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) ) = ( 𝑥 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑘 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) ) |
18 |
|
ovex |
⊢ ( 𝑅 Σg ( 𝑘 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑋 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ ( 𝑋 ∘f − 𝑘 ) ) ) ) ) ∈ V |
19 |
16 17 18
|
fvmpt |
⊢ ( 𝑋 ∈ 𝐷 → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑘 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) ) ‘ 𝑋 ) = ( 𝑅 Σg ( 𝑘 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑋 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ ( 𝑋 ∘f − 𝑘 ) ) ) ) ) ) |
20 |
8 19
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑘 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) ) ‘ 𝑋 ) = ( 𝑅 Σg ( 𝑘 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑋 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ ( 𝑋 ∘f − 𝑘 ) ) ) ) ) ) |
21 |
10 20
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐹 ∙ 𝐺 ) ‘ 𝑋 ) = ( 𝑅 Σg ( 𝑘 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑋 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ ( 𝑋 ∘f − 𝑘 ) ) ) ) ) ) |