Step |
Hyp |
Ref |
Expression |
1 |
|
psrgrp.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
2 |
|
psrgrp.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
3 |
|
psrgrp.r |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
4 |
|
psrneg.d |
⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
5 |
|
psrneg.i |
⊢ 𝑁 = ( invg ‘ 𝑅 ) |
6 |
|
psrneg.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
7 |
|
psrneg.m |
⊢ 𝑀 = ( invg ‘ 𝑆 ) |
8 |
|
psrneg.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
9 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
10 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
11 |
1 2 3 4 5 6 8 9 10
|
psrlinv |
⊢ ( 𝜑 → ( ( 𝑁 ∘ 𝑋 ) ( +g ‘ 𝑆 ) 𝑋 ) = ( 𝐷 × { ( 0g ‘ 𝑅 ) } ) ) |
12 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
13 |
1 2 3 4 9 12
|
psr0 |
⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) = ( 𝐷 × { ( 0g ‘ 𝑅 ) } ) ) |
14 |
11 13
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝑁 ∘ 𝑋 ) ( +g ‘ 𝑆 ) 𝑋 ) = ( 0g ‘ 𝑆 ) ) |
15 |
1 2 3
|
psrgrp |
⊢ ( 𝜑 → 𝑆 ∈ Grp ) |
16 |
1 2 3 4 5 6 8
|
psrnegcl |
⊢ ( 𝜑 → ( 𝑁 ∘ 𝑋 ) ∈ 𝐵 ) |
17 |
6 10 12 7
|
grpinvid2 |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑁 ∘ 𝑋 ) ∈ 𝐵 ) → ( ( 𝑀 ‘ 𝑋 ) = ( 𝑁 ∘ 𝑋 ) ↔ ( ( 𝑁 ∘ 𝑋 ) ( +g ‘ 𝑆 ) 𝑋 ) = ( 0g ‘ 𝑆 ) ) ) |
18 |
15 8 16 17
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑋 ) = ( 𝑁 ∘ 𝑋 ) ↔ ( ( 𝑁 ∘ 𝑋 ) ( +g ‘ 𝑆 ) 𝑋 ) = ( 0g ‘ 𝑆 ) ) ) |
19 |
14 18
|
mpbird |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) = ( 𝑁 ∘ 𝑋 ) ) |