Step |
Hyp |
Ref |
Expression |
1 |
|
psropprmul.y |
⊢ 𝑌 = ( 𝐼 mPwSer 𝑅 ) |
2 |
|
psropprmul.s |
⊢ 𝑆 = ( oppr ‘ 𝑅 ) |
3 |
|
psropprmul.z |
⊢ 𝑍 = ( 𝐼 mPwSer 𝑆 ) |
4 |
|
psropprmul.t |
⊢ · = ( .r ‘ 𝑌 ) |
5 |
|
psropprmul.u |
⊢ ∙ = ( .r ‘ 𝑍 ) |
6 |
|
psropprmul.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
8 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
9 |
|
ringcmn |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ CMnd ) |
10 |
9
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → 𝑅 ∈ CMnd ) |
11 |
10
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → 𝑅 ∈ CMnd ) |
12 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
13 |
12
|
rabex |
⊢ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∈ V |
14 |
13
|
rabex |
⊢ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ∈ V |
15 |
14
|
a1i |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ∈ V ) |
16 |
|
simpll1 |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) → 𝑅 ∈ Ring ) |
17 |
|
eqid |
⊢ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } = { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } |
18 |
|
simp3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → 𝐺 ∈ 𝐵 ) |
19 |
1 7 17 6 18
|
psrelbas |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → 𝐺 : { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
20 |
19
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → 𝐺 : { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
21 |
|
elrabi |
⊢ ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } → 𝑒 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) |
22 |
|
ffvelrn |
⊢ ( ( 𝐺 : { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ∧ 𝑒 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( 𝐺 ‘ 𝑒 ) ∈ ( Base ‘ 𝑅 ) ) |
23 |
20 21 22
|
syl2an |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) → ( 𝐺 ‘ 𝑒 ) ∈ ( Base ‘ 𝑅 ) ) |
24 |
|
simp2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → 𝐹 ∈ 𝐵 ) |
25 |
1 7 17 6 24
|
psrelbas |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → 𝐹 : { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
26 |
25
|
ad2antrr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) → 𝐹 : { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
27 |
|
ssrab2 |
⊢ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ⊆ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } |
28 |
|
eqid |
⊢ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } = { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } |
29 |
17 28
|
psrbagconcl |
⊢ ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∧ 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) → ( 𝑏 ∘f − 𝑒 ) ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) |
30 |
29
|
adantll |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) → ( 𝑏 ∘f − 𝑒 ) ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) |
31 |
27 30
|
sselid |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) → ( 𝑏 ∘f − 𝑒 ) ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) |
32 |
26 31
|
ffvelrnd |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) → ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ∈ ( Base ‘ 𝑅 ) ) |
33 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
34 |
7 33
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐺 ‘ 𝑒 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
35 |
16 23 32 34
|
syl3anc |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) → ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
36 |
35
|
fmpttd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) : { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ⟶ ( Base ‘ 𝑅 ) ) |
37 |
|
mptexg |
⊢ ( { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ∈ V → ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) ∈ V ) |
38 |
14 37
|
mp1i |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) ∈ V ) |
39 |
|
funmpt |
⊢ Fun ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) |
40 |
39
|
a1i |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → Fun ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) ) |
41 |
|
fvexd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( 0g ‘ 𝑅 ) ∈ V ) |
42 |
17
|
psrbaglefi |
⊢ ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } → { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ∈ Fin ) |
43 |
42
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ∈ Fin ) |
44 |
|
suppssdm |
⊢ ( ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ dom ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) |
45 |
|
eqid |
⊢ ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) = ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) |
46 |
45
|
dmmptss |
⊢ dom ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) ⊆ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } |
47 |
44 46
|
sstri |
⊢ ( ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } |
48 |
47
|
a1i |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) |
49 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) ∈ V ∧ Fun ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) ∧ ( 0g ‘ 𝑅 ) ∈ V ) ∧ ( { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ∈ Fin ∧ ( ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) ) → ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
50 |
38 40 41 43 48 49
|
syl32anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
51 |
17 28
|
psrbagconf1o |
⊢ ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } → ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( 𝑏 ∘f − 𝑐 ) ) : { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } –1-1-onto→ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) |
52 |
51
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( 𝑏 ∘f − 𝑐 ) ) : { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } –1-1-onto→ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) |
53 |
7 8 11 15 36 50 52
|
gsumf1o |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) ) = ( 𝑅 Σg ( ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) ∘ ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( 𝑏 ∘f − 𝑐 ) ) ) ) ) |
54 |
17 28
|
psrbagconcl |
⊢ ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∧ 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) → ( 𝑏 ∘f − 𝑐 ) ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) |
55 |
54
|
adantll |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) → ( 𝑏 ∘f − 𝑐 ) ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) |
56 |
|
eqidd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( 𝑏 ∘f − 𝑐 ) ) = ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( 𝑏 ∘f − 𝑐 ) ) ) |
57 |
|
eqidd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) = ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) ) |
58 |
|
fveq2 |
⊢ ( 𝑒 = ( 𝑏 ∘f − 𝑐 ) → ( 𝐺 ‘ 𝑒 ) = ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) |
59 |
|
oveq2 |
⊢ ( 𝑒 = ( 𝑏 ∘f − 𝑐 ) → ( 𝑏 ∘f − 𝑒 ) = ( 𝑏 ∘f − ( 𝑏 ∘f − 𝑐 ) ) ) |
60 |
59
|
fveq2d |
⊢ ( 𝑒 = ( 𝑏 ∘f − 𝑐 ) → ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) = ( 𝐹 ‘ ( 𝑏 ∘f − ( 𝑏 ∘f − 𝑐 ) ) ) ) |
61 |
58 60
|
oveq12d |
⊢ ( 𝑒 = ( 𝑏 ∘f − 𝑐 ) → ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) = ( ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − ( 𝑏 ∘f − 𝑐 ) ) ) ) ) |
62 |
55 56 57 61
|
fmptco |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) ∘ ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( 𝑏 ∘f − 𝑐 ) ) ) = ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − ( 𝑏 ∘f − 𝑐 ) ) ) ) ) ) |
63 |
|
reldmpsr |
⊢ Rel dom mPwSer |
64 |
1 6 63
|
strov2rcl |
⊢ ( 𝐺 ∈ 𝐵 → 𝐼 ∈ V ) |
65 |
64
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → 𝐼 ∈ V ) |
66 |
65
|
ad2antrr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) → 𝐼 ∈ V ) |
67 |
17
|
psrbagf |
⊢ ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } → 𝑏 : 𝐼 ⟶ ℕ0 ) |
68 |
67
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → 𝑏 : 𝐼 ⟶ ℕ0 ) |
69 |
68
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) → 𝑏 : 𝐼 ⟶ ℕ0 ) |
70 |
|
elrabi |
⊢ ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } → 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) |
71 |
17
|
psrbagf |
⊢ ( 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } → 𝑐 : 𝐼 ⟶ ℕ0 ) |
72 |
70 71
|
syl |
⊢ ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } → 𝑐 : 𝐼 ⟶ ℕ0 ) |
73 |
72
|
adantl |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) → 𝑐 : 𝐼 ⟶ ℕ0 ) |
74 |
|
nn0cn |
⊢ ( 𝑒 ∈ ℕ0 → 𝑒 ∈ ℂ ) |
75 |
|
nn0cn |
⊢ ( 𝑓 ∈ ℕ0 → 𝑓 ∈ ℂ ) |
76 |
|
nncan |
⊢ ( ( 𝑒 ∈ ℂ ∧ 𝑓 ∈ ℂ ) → ( 𝑒 − ( 𝑒 − 𝑓 ) ) = 𝑓 ) |
77 |
74 75 76
|
syl2an |
⊢ ( ( 𝑒 ∈ ℕ0 ∧ 𝑓 ∈ ℕ0 ) → ( 𝑒 − ( 𝑒 − 𝑓 ) ) = 𝑓 ) |
78 |
77
|
adantl |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) ∧ ( 𝑒 ∈ ℕ0 ∧ 𝑓 ∈ ℕ0 ) ) → ( 𝑒 − ( 𝑒 − 𝑓 ) ) = 𝑓 ) |
79 |
66 69 73 78
|
caonncan |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) → ( 𝑏 ∘f − ( 𝑏 ∘f − 𝑐 ) ) = 𝑐 ) |
80 |
79
|
fveq2d |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) → ( 𝐹 ‘ ( 𝑏 ∘f − ( 𝑏 ∘f − 𝑐 ) ) ) = ( 𝐹 ‘ 𝑐 ) ) |
81 |
80
|
oveq2d |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) → ( ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − ( 𝑏 ∘f − 𝑐 ) ) ) ) = ( ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ 𝑐 ) ) ) |
82 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
83 |
7 33 2 82
|
opprmul |
⊢ ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) = ( ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ 𝑐 ) ) |
84 |
81 83
|
eqtr4di |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) → ( ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − ( 𝑏 ∘f − 𝑐 ) ) ) ) = ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) ) |
85 |
84
|
mpteq2dva |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − ( 𝑏 ∘f − 𝑐 ) ) ) ) ) = ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) ) ) |
86 |
62 85
|
eqtrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) ∘ ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( 𝑏 ∘f − 𝑐 ) ) ) = ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) ) ) |
87 |
86
|
oveq2d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) ∘ ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( 𝑏 ∘f − 𝑐 ) ) ) ) = ( 𝑅 Σg ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) ) ) ) |
88 |
14
|
mptex |
⊢ ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) ) ∈ V |
89 |
88
|
a1i |
⊢ ( 𝑅 ∈ Ring → ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) ) ∈ V ) |
90 |
|
id |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Ring ) |
91 |
2
|
fvexi |
⊢ 𝑆 ∈ V |
92 |
91
|
a1i |
⊢ ( 𝑅 ∈ Ring → 𝑆 ∈ V ) |
93 |
2 7
|
opprbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑆 ) |
94 |
93
|
a1i |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑆 ) ) |
95 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
96 |
2 95
|
oppradd |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑆 ) |
97 |
96
|
a1i |
⊢ ( 𝑅 ∈ Ring → ( +g ‘ 𝑅 ) = ( +g ‘ 𝑆 ) ) |
98 |
89 90 92 94 97
|
gsumpropd |
⊢ ( 𝑅 ∈ Ring → ( 𝑅 Σg ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) ) ) = ( 𝑆 Σg ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) ) ) ) |
99 |
98
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝑅 Σg ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) ) ) = ( 𝑆 Σg ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) ) ) ) |
100 |
99
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) ) ) = ( 𝑆 Σg ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) ) ) ) |
101 |
53 87 100
|
3eqtrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) ) = ( 𝑆 Σg ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) ) ) ) |
102 |
101
|
mpteq2dva |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( 𝑅 Σg ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) ) ) = ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( 𝑆 Σg ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) ) ) ) ) |
103 |
1 6 33 4 17 18 24
|
psrmulfval |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐺 · 𝐹 ) = ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( 𝑅 Σg ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) ) ) ) |
104 |
|
eqid |
⊢ ( Base ‘ 𝑍 ) = ( Base ‘ 𝑍 ) |
105 |
93
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑆 ) ) |
106 |
105
|
psrbaspropd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) ) |
107 |
1
|
fveq2i |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) |
108 |
6 107
|
eqtri |
⊢ 𝐵 = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) |
109 |
3
|
fveq2i |
⊢ ( Base ‘ 𝑍 ) = ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) |
110 |
106 108 109
|
3eqtr4g |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → 𝐵 = ( Base ‘ 𝑍 ) ) |
111 |
24 110
|
eleqtrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → 𝐹 ∈ ( Base ‘ 𝑍 ) ) |
112 |
18 110
|
eleqtrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → 𝐺 ∈ ( Base ‘ 𝑍 ) ) |
113 |
3 104 82 5 17 111 112
|
psrmulfval |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 ∙ 𝐺 ) = ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( 𝑆 Σg ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) ) ) ) ) |
114 |
102 103 113
|
3eqtr4rd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 ∙ 𝐺 ) = ( 𝐺 · 𝐹 ) ) |