Metamath Proof Explorer


Theorem psropprmul

Description: Reversing multiplication in a ring reverses multiplication in the power series ring. (Contributed by Stefan O'Rear, 27-Mar-2015)

Ref Expression
Hypotheses psropprmul.y 𝑌 = ( 𝐼 mPwSer 𝑅 )
psropprmul.s 𝑆 = ( oppr𝑅 )
psropprmul.z 𝑍 = ( 𝐼 mPwSer 𝑆 )
psropprmul.t · = ( .r𝑌 )
psropprmul.u = ( .r𝑍 )
psropprmul.b 𝐵 = ( Base ‘ 𝑌 )
Assertion psropprmul ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) → ( 𝐹 𝐺 ) = ( 𝐺 · 𝐹 ) )

Proof

Step Hyp Ref Expression
1 psropprmul.y 𝑌 = ( 𝐼 mPwSer 𝑅 )
2 psropprmul.s 𝑆 = ( oppr𝑅 )
3 psropprmul.z 𝑍 = ( 𝐼 mPwSer 𝑆 )
4 psropprmul.t · = ( .r𝑌 )
5 psropprmul.u = ( .r𝑍 )
6 psropprmul.b 𝐵 = ( Base ‘ 𝑌 )
7 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
8 eqid ( 0g𝑅 ) = ( 0g𝑅 )
9 ringcmn ( 𝑅 ∈ Ring → 𝑅 ∈ CMnd )
10 9 3ad2ant1 ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) → 𝑅 ∈ CMnd )
11 10 adantr ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → 𝑅 ∈ CMnd )
12 ovex ( ℕ0m 𝐼 ) ∈ V
13 12 rabex { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∈ V
14 13 rabex { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ∈ V
15 14 a1i ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ∈ V )
16 simpll1 ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ) → 𝑅 ∈ Ring )
17 eqid { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } = { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin }
18 simp3 ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) → 𝐺𝐵 )
19 1 7 17 6 18 psrelbas ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) → 𝐺 : { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
20 19 adantr ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → 𝐺 : { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
21 elrabi ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } → 𝑒 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } )
22 ffvelrn ( ( 𝐺 : { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ∧ 𝑒 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → ( 𝐺𝑒 ) ∈ ( Base ‘ 𝑅 ) )
23 20 21 22 syl2an ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ) → ( 𝐺𝑒 ) ∈ ( Base ‘ 𝑅 ) )
24 simp2 ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) → 𝐹𝐵 )
25 1 7 17 6 24 psrelbas ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) → 𝐹 : { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
26 25 ad2antrr ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ) → 𝐹 : { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
27 ssrab2 { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ⊆ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin }
28 eqid { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } = { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 }
29 17 28 psrbagconcl ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∧ 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ) → ( 𝑏f𝑒 ) ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } )
30 29 adantll ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ) → ( 𝑏f𝑒 ) ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } )
31 27 30 sselid ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ) → ( 𝑏f𝑒 ) ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } )
32 26 31 ffvelrnd ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ) → ( 𝐹 ‘ ( 𝑏f𝑒 ) ) ∈ ( Base ‘ 𝑅 ) )
33 eqid ( .r𝑅 ) = ( .r𝑅 )
34 7 33 ringcl ( ( 𝑅 ∈ Ring ∧ ( 𝐺𝑒 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐹 ‘ ( 𝑏f𝑒 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐺𝑒 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑒 ) ) ) ∈ ( Base ‘ 𝑅 ) )
35 16 23 32 34 syl3anc ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ) → ( ( 𝐺𝑒 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑒 ) ) ) ∈ ( Base ‘ 𝑅 ) )
36 35 fmpttd ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐺𝑒 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑒 ) ) ) ) : { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ⟶ ( Base ‘ 𝑅 ) )
37 mptexg ( { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ∈ V → ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐺𝑒 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑒 ) ) ) ) ∈ V )
38 14 37 mp1i ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐺𝑒 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑒 ) ) ) ) ∈ V )
39 funmpt Fun ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐺𝑒 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑒 ) ) ) )
40 39 a1i ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → Fun ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐺𝑒 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑒 ) ) ) ) )
41 fvexd ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → ( 0g𝑅 ) ∈ V )
42 17 psrbaglefi ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } → { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ∈ Fin )
43 42 adantl ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ∈ Fin )
44 suppssdm ( ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐺𝑒 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑒 ) ) ) ) supp ( 0g𝑅 ) ) ⊆ dom ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐺𝑒 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑒 ) ) ) )
45 eqid ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐺𝑒 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑒 ) ) ) ) = ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐺𝑒 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑒 ) ) ) )
46 45 dmmptss dom ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐺𝑒 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑒 ) ) ) ) ⊆ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 }
47 44 46 sstri ( ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐺𝑒 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑒 ) ) ) ) supp ( 0g𝑅 ) ) ⊆ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 }
48 47 a1i ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → ( ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐺𝑒 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑒 ) ) ) ) supp ( 0g𝑅 ) ) ⊆ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } )
49 suppssfifsupp ( ( ( ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐺𝑒 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑒 ) ) ) ) ∈ V ∧ Fun ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐺𝑒 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑒 ) ) ) ) ∧ ( 0g𝑅 ) ∈ V ) ∧ ( { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ∈ Fin ∧ ( ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐺𝑒 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑒 ) ) ) ) supp ( 0g𝑅 ) ) ⊆ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ) ) → ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐺𝑒 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑒 ) ) ) ) finSupp ( 0g𝑅 ) )
50 38 40 41 43 48 49 syl32anc ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐺𝑒 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑒 ) ) ) ) finSupp ( 0g𝑅 ) )
51 17 28 psrbagconf1o ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } → ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( 𝑏f𝑐 ) ) : { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } –1-1-onto→ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } )
52 51 adantl ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( 𝑏f𝑐 ) ) : { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } –1-1-onto→ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } )
53 7 8 11 15 36 50 52 gsumf1o ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐺𝑒 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑒 ) ) ) ) ) = ( 𝑅 Σg ( ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐺𝑒 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑒 ) ) ) ) ∘ ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( 𝑏f𝑐 ) ) ) ) )
54 17 28 psrbagconcl ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∧ 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ) → ( 𝑏f𝑐 ) ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } )
55 54 adantll ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ) → ( 𝑏f𝑐 ) ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } )
56 eqidd ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( 𝑏f𝑐 ) ) = ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( 𝑏f𝑐 ) ) )
57 eqidd ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐺𝑒 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑒 ) ) ) ) = ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐺𝑒 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑒 ) ) ) ) )
58 fveq2 ( 𝑒 = ( 𝑏f𝑐 ) → ( 𝐺𝑒 ) = ( 𝐺 ‘ ( 𝑏f𝑐 ) ) )
59 oveq2 ( 𝑒 = ( 𝑏f𝑐 ) → ( 𝑏f𝑒 ) = ( 𝑏f − ( 𝑏f𝑐 ) ) )
60 59 fveq2d ( 𝑒 = ( 𝑏f𝑐 ) → ( 𝐹 ‘ ( 𝑏f𝑒 ) ) = ( 𝐹 ‘ ( 𝑏f − ( 𝑏f𝑐 ) ) ) )
61 58 60 oveq12d ( 𝑒 = ( 𝑏f𝑐 ) → ( ( 𝐺𝑒 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑒 ) ) ) = ( ( 𝐺 ‘ ( 𝑏f𝑐 ) ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f − ( 𝑏f𝑐 ) ) ) ) )
62 55 56 57 61 fmptco ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → ( ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐺𝑒 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑒 ) ) ) ) ∘ ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( 𝑏f𝑐 ) ) ) = ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐺 ‘ ( 𝑏f𝑐 ) ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f − ( 𝑏f𝑐 ) ) ) ) ) )
63 reldmpsr Rel dom mPwSer
64 1 6 63 strov2rcl ( 𝐺𝐵𝐼 ∈ V )
65 64 3ad2ant3 ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) → 𝐼 ∈ V )
66 65 ad2antrr ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ) → 𝐼 ∈ V )
67 17 psrbagf ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } → 𝑏 : 𝐼 ⟶ ℕ0 )
68 67 adantl ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → 𝑏 : 𝐼 ⟶ ℕ0 )
69 68 adantr ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ) → 𝑏 : 𝐼 ⟶ ℕ0 )
70 elrabi ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } → 𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } )
71 17 psrbagf ( 𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } → 𝑐 : 𝐼 ⟶ ℕ0 )
72 70 71 syl ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } → 𝑐 : 𝐼 ⟶ ℕ0 )
73 72 adantl ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ) → 𝑐 : 𝐼 ⟶ ℕ0 )
74 nn0cn ( 𝑒 ∈ ℕ0𝑒 ∈ ℂ )
75 nn0cn ( 𝑓 ∈ ℕ0𝑓 ∈ ℂ )
76 nncan ( ( 𝑒 ∈ ℂ ∧ 𝑓 ∈ ℂ ) → ( 𝑒 − ( 𝑒𝑓 ) ) = 𝑓 )
77 74 75 76 syl2an ( ( 𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ) → ( 𝑒 − ( 𝑒𝑓 ) ) = 𝑓 )
78 77 adantl ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ) ∧ ( 𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ) ) → ( 𝑒 − ( 𝑒𝑓 ) ) = 𝑓 )
79 66 69 73 78 caonncan ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ) → ( 𝑏f − ( 𝑏f𝑐 ) ) = 𝑐 )
80 79 fveq2d ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ) → ( 𝐹 ‘ ( 𝑏f − ( 𝑏f𝑐 ) ) ) = ( 𝐹𝑐 ) )
81 80 oveq2d ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ) → ( ( 𝐺 ‘ ( 𝑏f𝑐 ) ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f − ( 𝑏f𝑐 ) ) ) ) = ( ( 𝐺 ‘ ( 𝑏f𝑐 ) ) ( .r𝑅 ) ( 𝐹𝑐 ) ) )
82 eqid ( .r𝑆 ) = ( .r𝑆 )
83 7 33 2 82 opprmul ( ( 𝐹𝑐 ) ( .r𝑆 ) ( 𝐺 ‘ ( 𝑏f𝑐 ) ) ) = ( ( 𝐺 ‘ ( 𝑏f𝑐 ) ) ( .r𝑅 ) ( 𝐹𝑐 ) )
84 81 83 eqtr4di ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ) → ( ( 𝐺 ‘ ( 𝑏f𝑐 ) ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f − ( 𝑏f𝑐 ) ) ) ) = ( ( 𝐹𝑐 ) ( .r𝑆 ) ( 𝐺 ‘ ( 𝑏f𝑐 ) ) ) )
85 84 mpteq2dva ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐺 ‘ ( 𝑏f𝑐 ) ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f − ( 𝑏f𝑐 ) ) ) ) ) = ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐹𝑐 ) ( .r𝑆 ) ( 𝐺 ‘ ( 𝑏f𝑐 ) ) ) ) )
86 62 85 eqtrd ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → ( ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐺𝑒 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑒 ) ) ) ) ∘ ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( 𝑏f𝑐 ) ) ) = ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐹𝑐 ) ( .r𝑆 ) ( 𝐺 ‘ ( 𝑏f𝑐 ) ) ) ) )
87 86 oveq2d ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐺𝑒 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑒 ) ) ) ) ∘ ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( 𝑏f𝑐 ) ) ) ) = ( 𝑅 Σg ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐹𝑐 ) ( .r𝑆 ) ( 𝐺 ‘ ( 𝑏f𝑐 ) ) ) ) ) )
88 14 mptex ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐹𝑐 ) ( .r𝑆 ) ( 𝐺 ‘ ( 𝑏f𝑐 ) ) ) ) ∈ V
89 88 a1i ( 𝑅 ∈ Ring → ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐹𝑐 ) ( .r𝑆 ) ( 𝐺 ‘ ( 𝑏f𝑐 ) ) ) ) ∈ V )
90 id ( 𝑅 ∈ Ring → 𝑅 ∈ Ring )
91 2 fvexi 𝑆 ∈ V
92 91 a1i ( 𝑅 ∈ Ring → 𝑆 ∈ V )
93 2 7 opprbas ( Base ‘ 𝑅 ) = ( Base ‘ 𝑆 )
94 93 a1i ( 𝑅 ∈ Ring → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑆 ) )
95 eqid ( +g𝑅 ) = ( +g𝑅 )
96 2 95 oppradd ( +g𝑅 ) = ( +g𝑆 )
97 96 a1i ( 𝑅 ∈ Ring → ( +g𝑅 ) = ( +g𝑆 ) )
98 89 90 92 94 97 gsumpropd ( 𝑅 ∈ Ring → ( 𝑅 Σg ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐹𝑐 ) ( .r𝑆 ) ( 𝐺 ‘ ( 𝑏f𝑐 ) ) ) ) ) = ( 𝑆 Σg ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐹𝑐 ) ( .r𝑆 ) ( 𝐺 ‘ ( 𝑏f𝑐 ) ) ) ) ) )
99 98 3ad2ant1 ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) → ( 𝑅 Σg ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐹𝑐 ) ( .r𝑆 ) ( 𝐺 ‘ ( 𝑏f𝑐 ) ) ) ) ) = ( 𝑆 Σg ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐹𝑐 ) ( .r𝑆 ) ( 𝐺 ‘ ( 𝑏f𝑐 ) ) ) ) ) )
100 99 adantr ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐹𝑐 ) ( .r𝑆 ) ( 𝐺 ‘ ( 𝑏f𝑐 ) ) ) ) ) = ( 𝑆 Σg ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐹𝑐 ) ( .r𝑆 ) ( 𝐺 ‘ ( 𝑏f𝑐 ) ) ) ) ) )
101 53 87 100 3eqtrd ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐺𝑒 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑒 ) ) ) ) ) = ( 𝑆 Σg ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐹𝑐 ) ( .r𝑆 ) ( 𝐺 ‘ ( 𝑏f𝑐 ) ) ) ) ) )
102 101 mpteq2dva ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) → ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( 𝑅 Σg ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐺𝑒 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑒 ) ) ) ) ) ) = ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( 𝑆 Σg ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐹𝑐 ) ( .r𝑆 ) ( 𝐺 ‘ ( 𝑏f𝑐 ) ) ) ) ) ) )
103 1 6 33 4 17 18 24 psrmulfval ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) → ( 𝐺 · 𝐹 ) = ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( 𝑅 Σg ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐺𝑒 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑒 ) ) ) ) ) ) )
104 eqid ( Base ‘ 𝑍 ) = ( Base ‘ 𝑍 )
105 93 a1i ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑆 ) )
106 105 psrbaspropd ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) )
107 1 fveq2i ( Base ‘ 𝑌 ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) )
108 6 107 eqtri 𝐵 = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) )
109 3 fveq2i ( Base ‘ 𝑍 ) = ( Base ‘ ( 𝐼 mPwSer 𝑆 ) )
110 106 108 109 3eqtr4g ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) → 𝐵 = ( Base ‘ 𝑍 ) )
111 24 110 eleqtrd ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) → 𝐹 ∈ ( Base ‘ 𝑍 ) )
112 18 110 eleqtrd ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) → 𝐺 ∈ ( Base ‘ 𝑍 ) )
113 3 104 82 5 17 111 112 psrmulfval ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) → ( 𝐹 𝐺 ) = ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( 𝑆 Σg ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑r𝑏 } ↦ ( ( 𝐹𝑐 ) ( .r𝑆 ) ( 𝐺 ‘ ( 𝑏f𝑐 ) ) ) ) ) ) )
114 102 103 113 3eqtr4rd ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) → ( 𝐹 𝐺 ) = ( 𝐺 · 𝐹 ) )