| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psrring.s | ⊢ 𝑆  =  ( 𝐼  mPwSer  𝑅 ) | 
						
							| 2 |  | psrring.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 3 |  | psrring.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 4 |  | eqidd | ⊢ ( 𝜑  →  ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) ) | 
						
							| 5 |  | eqidd | ⊢ ( 𝜑  →  ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑆 ) ) | 
						
							| 6 |  | eqidd | ⊢ ( 𝜑  →  ( .r ‘ 𝑆 )  =  ( .r ‘ 𝑆 ) ) | 
						
							| 7 |  | ringgrp | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Grp ) | 
						
							| 8 | 3 7 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Grp ) | 
						
							| 9 | 1 2 8 | psrgrp | ⊢ ( 𝜑  →  𝑆  ∈  Grp ) | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 11 |  | eqid | ⊢ ( .r ‘ 𝑆 )  =  ( .r ‘ 𝑆 ) | 
						
							| 12 | 3 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  𝑅  ∈  Ring ) | 
						
							| 13 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  𝑥  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 14 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  𝑦  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 15 | 1 10 11 12 13 14 | psrmulcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 16 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 )  ∧  𝑧  ∈  ( Base ‘ 𝑆 ) ) )  →  𝐼  ∈  𝑉 ) | 
						
							| 17 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 )  ∧  𝑧  ∈  ( Base ‘ 𝑆 ) ) )  →  𝑅  ∈  Ring ) | 
						
							| 18 |  | eqid | ⊢ { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  =  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 19 |  | simpr1 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 )  ∧  𝑧  ∈  ( Base ‘ 𝑆 ) ) )  →  𝑥  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 20 |  | simpr2 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 )  ∧  𝑧  ∈  ( Base ‘ 𝑆 ) ) )  →  𝑦  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 21 |  | simpr3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 )  ∧  𝑧  ∈  ( Base ‘ 𝑆 ) ) )  →  𝑧  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 22 | 1 16 17 18 11 10 19 20 21 | psrass1 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 )  ∧  𝑧  ∈  ( Base ‘ 𝑆 ) ) )  →  ( ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) ( .r ‘ 𝑆 ) 𝑧 )  =  ( 𝑥 ( .r ‘ 𝑆 ) ( 𝑦 ( .r ‘ 𝑆 ) 𝑧 ) ) ) | 
						
							| 23 |  | eqid | ⊢ ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑆 ) | 
						
							| 24 | 1 16 17 18 11 10 19 20 21 23 | psrdi | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 )  ∧  𝑧  ∈  ( Base ‘ 𝑆 ) ) )  →  ( 𝑥 ( .r ‘ 𝑆 ) ( 𝑦 ( +g ‘ 𝑆 ) 𝑧 ) )  =  ( ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) ( +g ‘ 𝑆 ) ( 𝑥 ( .r ‘ 𝑆 ) 𝑧 ) ) ) | 
						
							| 25 | 1 16 17 18 11 10 19 20 21 23 | psrdir | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 )  ∧  𝑧  ∈  ( Base ‘ 𝑆 ) ) )  →  ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( .r ‘ 𝑆 ) 𝑧 )  =  ( ( 𝑥 ( .r ‘ 𝑆 ) 𝑧 ) ( +g ‘ 𝑆 ) ( 𝑦 ( .r ‘ 𝑆 ) 𝑧 ) ) ) | 
						
							| 26 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 27 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 28 |  | eqid | ⊢ ( 𝑟  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑟  =  ( 𝐼  ×  { 0 } ) ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) )  =  ( 𝑟  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑟  =  ( 𝐼  ×  { 0 } ) ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 29 | 1 2 3 18 26 27 28 10 | psr1cl | ⊢ ( 𝜑  →  ( 𝑟  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑟  =  ( 𝐼  ×  { 0 } ) ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 30 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑆 ) )  →  𝐼  ∈  𝑉 ) | 
						
							| 31 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑆 ) )  →  𝑅  ∈  Ring ) | 
						
							| 32 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑆 ) )  →  𝑥  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 33 | 1 30 31 18 26 27 28 10 11 32 | psrlidm | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑆 ) )  →  ( ( 𝑟  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑟  =  ( 𝐼  ×  { 0 } ) ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ( .r ‘ 𝑆 ) 𝑥 )  =  𝑥 ) | 
						
							| 34 | 1 30 31 18 26 27 28 10 11 32 | psrridm | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑆 ) )  →  ( 𝑥 ( .r ‘ 𝑆 ) ( 𝑟  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑟  =  ( 𝐼  ×  { 0 } ) ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) )  =  𝑥 ) | 
						
							| 35 | 4 5 6 9 15 22 24 25 29 33 34 | isringd | ⊢ ( 𝜑  →  𝑆  ∈  Ring ) |