Metamath Proof Explorer


Theorem psrval

Description: Value of the multivariate power series structure. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses psrval.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
psrval.k 𝐾 = ( Base ‘ 𝑅 )
psrval.a + = ( +g𝑅 )
psrval.m · = ( .r𝑅 )
psrval.o 𝑂 = ( TopOpen ‘ 𝑅 )
psrval.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
psrval.b ( 𝜑𝐵 = ( 𝐾m 𝐷 ) )
psrval.p = ( ∘f + ↾ ( 𝐵 × 𝐵 ) )
psrval.t × = ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑘𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑓𝑥 ) · ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) )
psrval.v = ( 𝑥𝐾 , 𝑓𝐵 ↦ ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) )
psrval.j ( 𝜑𝐽 = ( ∏t ‘ ( 𝐷 × { 𝑂 } ) ) )
psrval.i ( 𝜑𝐼𝑊 )
psrval.r ( 𝜑𝑅𝑋 )
Assertion psrval ( 𝜑𝑆 = ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , × ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ⟩ , ⟨ ( TopSet ‘ ndx ) , 𝐽 ⟩ } ) )

Proof

Step Hyp Ref Expression
1 psrval.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
2 psrval.k 𝐾 = ( Base ‘ 𝑅 )
3 psrval.a + = ( +g𝑅 )
4 psrval.m · = ( .r𝑅 )
5 psrval.o 𝑂 = ( TopOpen ‘ 𝑅 )
6 psrval.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
7 psrval.b ( 𝜑𝐵 = ( 𝐾m 𝐷 ) )
8 psrval.p = ( ∘f + ↾ ( 𝐵 × 𝐵 ) )
9 psrval.t × = ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑘𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑓𝑥 ) · ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) )
10 psrval.v = ( 𝑥𝐾 , 𝑓𝐵 ↦ ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) )
11 psrval.j ( 𝜑𝐽 = ( ∏t ‘ ( 𝐷 × { 𝑂 } ) ) )
12 psrval.i ( 𝜑𝐼𝑊 )
13 psrval.r ( 𝜑𝑅𝑋 )
14 df-psr mPwSer = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } / 𝑑 ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ( { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓𝑏 , 𝑔𝑏 ↦ ( 𝑘𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦𝑑𝑦r𝑘 } ↦ ( ( 𝑓𝑥 ) ( .r𝑟 ) ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑟 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r𝑟 ) 𝑓 ) ) ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) ⟩ } ) )
15 14 a1i ( 𝜑 → mPwSer = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } / 𝑑 ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ( { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓𝑏 , 𝑔𝑏 ↦ ( 𝑘𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦𝑑𝑦r𝑘 } ↦ ( ( 𝑓𝑥 ) ( .r𝑟 ) ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑟 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r𝑟 ) 𝑓 ) ) ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) ⟩ } ) ) )
16 simprl ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) → 𝑖 = 𝐼 )
17 16 oveq2d ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) → ( ℕ0m 𝑖 ) = ( ℕ0m 𝐼 ) )
18 rabeq ( ( ℕ0m 𝑖 ) = ( ℕ0m 𝐼 ) → { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
19 17 18 syl ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) → { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
20 19 6 eqtr4di ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) → { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } = 𝐷 )
21 20 csbeq1d ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) → { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } / 𝑑 ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ( { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓𝑏 , 𝑔𝑏 ↦ ( 𝑘𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦𝑑𝑦r𝑘 } ↦ ( ( 𝑓𝑥 ) ( .r𝑟 ) ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑟 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r𝑟 ) 𝑓 ) ) ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) ⟩ } ) = 𝐷 / 𝑑 ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ( { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓𝑏 , 𝑔𝑏 ↦ ( 𝑘𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦𝑑𝑦r𝑘 } ↦ ( ( 𝑓𝑥 ) ( .r𝑟 ) ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑟 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r𝑟 ) 𝑓 ) ) ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) ⟩ } ) )
22 ovex ( ℕ0m 𝑖 ) ∈ V
23 22 rabex { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } ∈ V
24 20 23 eqeltrrdi ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) → 𝐷 ∈ V )
25 simplrr ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) → 𝑟 = 𝑅 )
26 25 fveq2d ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) )
27 26 2 eqtr4di ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) → ( Base ‘ 𝑟 ) = 𝐾 )
28 simpr ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) → 𝑑 = 𝐷 )
29 27 28 oveq12d ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) → ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) = ( 𝐾m 𝐷 ) )
30 7 ad2antrr ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) → 𝐵 = ( 𝐾m 𝐷 ) )
31 29 30 eqtr4d ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) → ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) = 𝐵 )
32 31 csbeq1d ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) → ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ( { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓𝑏 , 𝑔𝑏 ↦ ( 𝑘𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦𝑑𝑦r𝑘 } ↦ ( ( 𝑓𝑥 ) ( .r𝑟 ) ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑟 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r𝑟 ) 𝑓 ) ) ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) ⟩ } ) = 𝐵 / 𝑏 ( { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓𝑏 , 𝑔𝑏 ↦ ( 𝑘𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦𝑑𝑦r𝑘 } ↦ ( ( 𝑓𝑥 ) ( .r𝑟 ) ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑟 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r𝑟 ) 𝑓 ) ) ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) ⟩ } ) )
33 ovex ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) ∈ V
34 31 33 eqeltrrdi ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) → 𝐵 ∈ V )
35 simpr ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → 𝑏 = 𝐵 )
36 35 opeq2d ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ = ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ )
37 25 adantr ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → 𝑟 = 𝑅 )
38 37 fveq2d ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( +g𝑟 ) = ( +g𝑅 ) )
39 38 3 eqtr4di ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( +g𝑟 ) = + )
40 39 ofeqd ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ∘f ( +g𝑟 ) = ∘f + )
41 35 35 xpeq12d ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( 𝑏 × 𝑏 ) = ( 𝐵 × 𝐵 ) )
42 40 41 reseq12d ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( ∘f ( +g𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) = ( ∘f + ↾ ( 𝐵 × 𝐵 ) ) )
43 42 8 eqtr4di ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( ∘f ( +g𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) = )
44 43 opeq2d ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ⟨ ( +g ‘ ndx ) , ( ∘f ( +g𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) ⟩ = ⟨ ( +g ‘ ndx ) , ⟩ )
45 28 adantr ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → 𝑑 = 𝐷 )
46 rabeq ( 𝑑 = 𝐷 → { 𝑦𝑑𝑦r𝑘 } = { 𝑦𝐷𝑦r𝑘 } )
47 45 46 syl ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → { 𝑦𝑑𝑦r𝑘 } = { 𝑦𝐷𝑦r𝑘 } )
48 37 fveq2d ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( .r𝑟 ) = ( .r𝑅 ) )
49 48 4 eqtr4di ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( .r𝑟 ) = · )
50 49 oveqd ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( ( 𝑓𝑥 ) ( .r𝑟 ) ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) = ( ( 𝑓𝑥 ) · ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) )
51 47 50 mpteq12dv ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( 𝑥 ∈ { 𝑦𝑑𝑦r𝑘 } ↦ ( ( 𝑓𝑥 ) ( .r𝑟 ) ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) ) = ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑓𝑥 ) · ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) ) )
52 37 51 oveq12d ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( 𝑟 Σg ( 𝑥 ∈ { 𝑦𝑑𝑦r𝑘 } ↦ ( ( 𝑓𝑥 ) ( .r𝑟 ) ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑓𝑥 ) · ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) ) ) )
53 45 52 mpteq12dv ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( 𝑘𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦𝑑𝑦r𝑘 } ↦ ( ( 𝑓𝑥 ) ( .r𝑟 ) ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) = ( 𝑘𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑓𝑥 ) · ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) )
54 35 35 53 mpoeq123dv ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( 𝑓𝑏 , 𝑔𝑏 ↦ ( 𝑘𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦𝑑𝑦r𝑘 } ↦ ( ( 𝑓𝑥 ) ( .r𝑟 ) ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) ) = ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑘𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑓𝑥 ) · ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) ) )
55 54 9 eqtr4di ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( 𝑓𝑏 , 𝑔𝑏 ↦ ( 𝑘𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦𝑑𝑦r𝑘 } ↦ ( ( 𝑓𝑥 ) ( .r𝑟 ) ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) ) = × )
56 55 opeq2d ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ⟨ ( .r ‘ ndx ) , ( 𝑓𝑏 , 𝑔𝑏 ↦ ( 𝑘𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦𝑑𝑦r𝑘 } ↦ ( ( 𝑓𝑥 ) ( .r𝑟 ) ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) ) ⟩ = ⟨ ( .r ‘ ndx ) , × ⟩ )
57 36 44 56 tpeq123d ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓𝑏 , 𝑔𝑏 ↦ ( 𝑘𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦𝑑𝑦r𝑘 } ↦ ( ( 𝑓𝑥 ) ( .r𝑟 ) ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) ) ⟩ } = { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , × ⟩ } )
58 37 opeq2d ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ⟨ ( Scalar ‘ ndx ) , 𝑟 ⟩ = ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ )
59 27 adantr ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( Base ‘ 𝑟 ) = 𝐾 )
60 49 ofeqd ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ∘f ( .r𝑟 ) = ∘f · )
61 45 xpeq1d ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( 𝑑 × { 𝑥 } ) = ( 𝐷 × { 𝑥 } ) )
62 eqidd ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → 𝑓 = 𝑓 )
63 60 61 62 oveq123d ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( ( 𝑑 × { 𝑥 } ) ∘f ( .r𝑟 ) 𝑓 ) = ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) )
64 59 35 63 mpoeq123dv ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r𝑟 ) 𝑓 ) ) = ( 𝑥𝐾 , 𝑓𝐵 ↦ ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) ) )
65 64 10 eqtr4di ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r𝑟 ) 𝑓 ) ) = )
66 65 opeq2d ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r𝑟 ) 𝑓 ) ) ⟩ = ⟨ ( ·𝑠 ‘ ndx ) , ⟩ )
67 37 fveq2d ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( TopOpen ‘ 𝑟 ) = ( TopOpen ‘ 𝑅 ) )
68 67 5 eqtr4di ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( TopOpen ‘ 𝑟 ) = 𝑂 )
69 68 sneqd ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → { ( TopOpen ‘ 𝑟 ) } = { 𝑂 } )
70 45 69 xpeq12d ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) = ( 𝐷 × { 𝑂 } ) )
71 70 fveq2d ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) = ( ∏t ‘ ( 𝐷 × { 𝑂 } ) ) )
72 11 ad3antrrr ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → 𝐽 = ( ∏t ‘ ( 𝐷 × { 𝑂 } ) ) )
73 71 72 eqtr4d ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) = 𝐽 )
74 73 opeq2d ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ⟨ ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) ⟩ = ⟨ ( TopSet ‘ ndx ) , 𝐽 ⟩ )
75 58 66 74 tpeq123d ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → { ⟨ ( Scalar ‘ ndx ) , 𝑟 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r𝑟 ) 𝑓 ) ) ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) ⟩ } = { ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ⟩ , ⟨ ( TopSet ‘ ndx ) , 𝐽 ⟩ } )
76 57 75 uneq12d ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓𝑏 , 𝑔𝑏 ↦ ( 𝑘𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦𝑑𝑦r𝑘 } ↦ ( ( 𝑓𝑥 ) ( .r𝑟 ) ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑟 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r𝑟 ) 𝑓 ) ) ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) ⟩ } ) = ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , × ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ⟩ , ⟨ ( TopSet ‘ ndx ) , 𝐽 ⟩ } ) )
77 34 76 csbied ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) → 𝐵 / 𝑏 ( { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓𝑏 , 𝑔𝑏 ↦ ( 𝑘𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦𝑑𝑦r𝑘 } ↦ ( ( 𝑓𝑥 ) ( .r𝑟 ) ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑟 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r𝑟 ) 𝑓 ) ) ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) ⟩ } ) = ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , × ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ⟩ , ⟨ ( TopSet ‘ ndx ) , 𝐽 ⟩ } ) )
78 32 77 eqtrd ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) → ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ( { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓𝑏 , 𝑔𝑏 ↦ ( 𝑘𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦𝑑𝑦r𝑘 } ↦ ( ( 𝑓𝑥 ) ( .r𝑟 ) ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑟 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r𝑟 ) 𝑓 ) ) ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) ⟩ } ) = ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , × ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ⟩ , ⟨ ( TopSet ‘ ndx ) , 𝐽 ⟩ } ) )
79 24 78 csbied ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) → 𝐷 / 𝑑 ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ( { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓𝑏 , 𝑔𝑏 ↦ ( 𝑘𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦𝑑𝑦r𝑘 } ↦ ( ( 𝑓𝑥 ) ( .r𝑟 ) ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑟 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r𝑟 ) 𝑓 ) ) ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) ⟩ } ) = ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , × ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ⟩ , ⟨ ( TopSet ‘ ndx ) , 𝐽 ⟩ } ) )
80 21 79 eqtrd ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) → { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } / 𝑑 ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ( { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓𝑏 , 𝑔𝑏 ↦ ( 𝑘𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦𝑑𝑦r𝑘 } ↦ ( ( 𝑓𝑥 ) ( .r𝑟 ) ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑟 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r𝑟 ) 𝑓 ) ) ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) ⟩ } ) = ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , × ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ⟩ , ⟨ ( TopSet ‘ ndx ) , 𝐽 ⟩ } ) )
81 12 elexd ( 𝜑𝐼 ∈ V )
82 13 elexd ( 𝜑𝑅 ∈ V )
83 tpex { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , × ⟩ } ∈ V
84 tpex { ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ⟩ , ⟨ ( TopSet ‘ ndx ) , 𝐽 ⟩ } ∈ V
85 83 84 unex ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , × ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ⟩ , ⟨ ( TopSet ‘ ndx ) , 𝐽 ⟩ } ) ∈ V
86 85 a1i ( 𝜑 → ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , × ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ⟩ , ⟨ ( TopSet ‘ ndx ) , 𝐽 ⟩ } ) ∈ V )
87 15 80 81 82 86 ovmpod ( 𝜑 → ( 𝐼 mPwSer 𝑅 ) = ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , × ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ⟩ , ⟨ ( TopSet ‘ ndx ) , 𝐽 ⟩ } ) )
88 1 87 eqtrid ( 𝜑𝑆 = ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , × ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ⟩ , ⟨ ( TopSet ‘ ndx ) , 𝐽 ⟩ } ) )