Description: A proper subclass has a nonempty difference. (Contributed by Mario Carneiro, 27-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | pssdif | ⊢ ( 𝐴 ⊊ 𝐵 → ( 𝐵 ∖ 𝐴 ) ≠ ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pss | ⊢ ( 𝐴 ⊊ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ) | |
2 | pssdifn0 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐵 ∖ 𝐴 ) ≠ ∅ ) | |
3 | 1 2 | sylbi | ⊢ ( 𝐴 ⊊ 𝐵 → ( 𝐵 ∖ 𝐴 ) ≠ ∅ ) |