Metamath Proof Explorer


Theorem pssdif

Description: A proper subclass has a nonempty difference. (Contributed by Mario Carneiro, 27-Apr-2016)

Ref Expression
Assertion pssdif ( 𝐴𝐵 → ( 𝐵𝐴 ) ≠ ∅ )

Proof

Step Hyp Ref Expression
1 df-pss ( 𝐴𝐵 ↔ ( 𝐴𝐵𝐴𝐵 ) )
2 pssdifn0 ( ( 𝐴𝐵𝐴𝐵 ) → ( 𝐵𝐴 ) ≠ ∅ )
3 1 2 sylbi ( 𝐴𝐵 → ( 𝐵𝐴 ) ≠ ∅ )