Description: A proper subclass has a nonempty difference. (Contributed by Mario Carneiro, 27-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pssdif | ⊢ ( 𝐴 ⊊ 𝐵 → ( 𝐵 ∖ 𝐴 ) ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pss | ⊢ ( 𝐴 ⊊ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ) | |
| 2 | pssdifn0 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐵 ∖ 𝐴 ) ≠ ∅ ) | |
| 3 | 1 2 | sylbi | ⊢ ( 𝐴 ⊊ 𝐵 → ( 𝐵 ∖ 𝐴 ) ≠ ∅ ) |