Step |
Hyp |
Ref |
Expression |
1 |
|
ssconb |
⊢ ( ( 𝐵 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐶 ) → ( 𝐵 ⊆ ( 𝐶 ∖ 𝐴 ) ↔ 𝐴 ⊆ ( 𝐶 ∖ 𝐵 ) ) ) |
2 |
1
|
ancoms |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝐵 ⊆ ( 𝐶 ∖ 𝐴 ) ↔ 𝐴 ⊆ ( 𝐶 ∖ 𝐵 ) ) ) |
3 |
|
difcom |
⊢ ( ( 𝐶 ∖ 𝐴 ) ⊆ 𝐵 ↔ ( 𝐶 ∖ 𝐵 ) ⊆ 𝐴 ) |
4 |
3
|
notbii |
⊢ ( ¬ ( 𝐶 ∖ 𝐴 ) ⊆ 𝐵 ↔ ¬ ( 𝐶 ∖ 𝐵 ) ⊆ 𝐴 ) |
5 |
4
|
a1i |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( ¬ ( 𝐶 ∖ 𝐴 ) ⊆ 𝐵 ↔ ¬ ( 𝐶 ∖ 𝐵 ) ⊆ 𝐴 ) ) |
6 |
2 5
|
anbi12d |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( ( 𝐵 ⊆ ( 𝐶 ∖ 𝐴 ) ∧ ¬ ( 𝐶 ∖ 𝐴 ) ⊆ 𝐵 ) ↔ ( 𝐴 ⊆ ( 𝐶 ∖ 𝐵 ) ∧ ¬ ( 𝐶 ∖ 𝐵 ) ⊆ 𝐴 ) ) ) |
7 |
|
dfpss3 |
⊢ ( 𝐵 ⊊ ( 𝐶 ∖ 𝐴 ) ↔ ( 𝐵 ⊆ ( 𝐶 ∖ 𝐴 ) ∧ ¬ ( 𝐶 ∖ 𝐴 ) ⊆ 𝐵 ) ) |
8 |
|
dfpss3 |
⊢ ( 𝐴 ⊊ ( 𝐶 ∖ 𝐵 ) ↔ ( 𝐴 ⊆ ( 𝐶 ∖ 𝐵 ) ∧ ¬ ( 𝐶 ∖ 𝐵 ) ⊆ 𝐴 ) ) |
9 |
6 7 8
|
3bitr4g |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝐵 ⊊ ( 𝐶 ∖ 𝐴 ) ↔ 𝐴 ⊊ ( 𝐶 ∖ 𝐵 ) ) ) |