Description: A proper subclass has a nonempty difference. (Contributed by NM, 3-May-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | pssdifn0 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐵 ∖ 𝐴 ) ≠ ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdif0 | ⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐵 ∖ 𝐴 ) = ∅ ) | |
2 | eqss | ⊢ ( 𝐴 = 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ) | |
3 | 2 | simplbi2 | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐵 ⊆ 𝐴 → 𝐴 = 𝐵 ) ) |
4 | 1 3 | syl5bir | ⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝐵 ∖ 𝐴 ) = ∅ → 𝐴 = 𝐵 ) ) |
5 | 4 | necon3d | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ≠ 𝐵 → ( 𝐵 ∖ 𝐴 ) ≠ ∅ ) ) |
6 | 5 | imp | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐵 ∖ 𝐴 ) ≠ ∅ ) |