Metamath Proof Explorer


Theorem pssdifn0

Description: A proper subclass has a nonempty difference. (Contributed by NM, 3-May-1994)

Ref Expression
Assertion pssdifn0 ( ( 𝐴𝐵𝐴𝐵 ) → ( 𝐵𝐴 ) ≠ ∅ )

Proof

Step Hyp Ref Expression
1 ssdif0 ( 𝐵𝐴 ↔ ( 𝐵𝐴 ) = ∅ )
2 eqss ( 𝐴 = 𝐵 ↔ ( 𝐴𝐵𝐵𝐴 ) )
3 2 simplbi2 ( 𝐴𝐵 → ( 𝐵𝐴𝐴 = 𝐵 ) )
4 1 3 syl5bir ( 𝐴𝐵 → ( ( 𝐵𝐴 ) = ∅ → 𝐴 = 𝐵 ) )
5 4 necon3d ( 𝐴𝐵 → ( 𝐴𝐵 → ( 𝐵𝐴 ) ≠ ∅ ) )
6 5 imp ( ( 𝐴𝐵𝐴𝐵 ) → ( 𝐵𝐴 ) ≠ ∅ )