Description: Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | psseq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶 ) ) | |
| 2 | neeq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶 ) ) | |
| 3 | 1 2 | anbi12d | ⊢ ( 𝐴 = 𝐵 → ( ( 𝐴 ⊆ 𝐶 ∧ 𝐴 ≠ 𝐶 ) ↔ ( 𝐵 ⊆ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) |
| 4 | df-pss | ⊢ ( 𝐴 ⊊ 𝐶 ↔ ( 𝐴 ⊆ 𝐶 ∧ 𝐴 ≠ 𝐶 ) ) | |
| 5 | df-pss | ⊢ ( 𝐵 ⊊ 𝐶 ↔ ( 𝐵 ⊆ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) | |
| 6 | 3 4 5 | 3bitr4g | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶 ) ) |