Description: An equality deduction for the proper subclass relationship. (Contributed by NM, 9-Jun-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psseq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| psseq12d.2 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | ||
| Assertion | psseq12d | ⊢ ( 𝜑 → ( 𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐷 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | psseq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 2 | psseq12d.2 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | |
| 3 | 1 | psseq1d | ⊢ ( 𝜑 → ( 𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶 ) ) | 
| 4 | 2 | psseq2d | ⊢ ( 𝜑 → ( 𝐵 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐷 ) ) | 
| 5 | 3 4 | bitrd | ⊢ ( 𝜑 → ( 𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐷 ) ) |