Metamath Proof Explorer


Theorem psseq12i

Description: An equality inference for the proper subclass relationship. (Contributed by NM, 9-Jun-2004)

Ref Expression
Hypotheses psseq1i.1 𝐴 = 𝐵
psseq12i.2 𝐶 = 𝐷
Assertion psseq12i ( 𝐴𝐶𝐵𝐷 )

Proof

Step Hyp Ref Expression
1 psseq1i.1 𝐴 = 𝐵
2 psseq12i.2 𝐶 = 𝐷
3 1 psseq1i ( 𝐴𝐶𝐵𝐶 )
4 2 psseq2i ( 𝐵𝐶𝐵𝐷 )
5 3 4 bitri ( 𝐴𝐶𝐵𝐷 )