Description: Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | psseq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐶 ⊊ 𝐴 ↔ 𝐶 ⊊ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵 ) ) | |
| 2 | neeq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵 ) ) | |
| 3 | 1 2 | anbi12d | ⊢ ( 𝐴 = 𝐵 → ( ( 𝐶 ⊆ 𝐴 ∧ 𝐶 ≠ 𝐴 ) ↔ ( 𝐶 ⊆ 𝐵 ∧ 𝐶 ≠ 𝐵 ) ) ) |
| 4 | df-pss | ⊢ ( 𝐶 ⊊ 𝐴 ↔ ( 𝐶 ⊆ 𝐴 ∧ 𝐶 ≠ 𝐴 ) ) | |
| 5 | df-pss | ⊢ ( 𝐶 ⊊ 𝐵 ↔ ( 𝐶 ⊆ 𝐵 ∧ 𝐶 ≠ 𝐵 ) ) | |
| 6 | 3 4 5 | 3bitr4g | ⊢ ( 𝐴 = 𝐵 → ( 𝐶 ⊊ 𝐴 ↔ 𝐶 ⊊ 𝐵 ) ) |