Metamath Proof Explorer


Theorem pssirr

Description: Proper subclass is irreflexive. Theorem 7 of Suppes p. 23. (Contributed by NM, 7-Feb-1996)

Ref Expression
Assertion pssirr ¬ 𝐴𝐴

Proof

Step Hyp Ref Expression
1 pm3.24 ¬ ( 𝐴𝐴 ∧ ¬ 𝐴𝐴 )
2 dfpss3 ( 𝐴𝐴 ↔ ( 𝐴𝐴 ∧ ¬ 𝐴𝐴 ) )
3 1 2 mtbir ¬ 𝐴𝐴