Step |
Hyp |
Ref |
Expression |
1 |
|
elprnq |
⊢ ( ( 𝐴 ∈ P ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ Q ) |
2 |
|
prub |
⊢ ( ( ( 𝐵 ∈ P ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ Q ) → ( ¬ 𝑥 ∈ 𝐵 → 𝑦 <Q 𝑥 ) ) |
3 |
1 2
|
sylan2 |
⊢ ( ( ( 𝐵 ∈ P ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐴 ∈ P ∧ 𝑥 ∈ 𝐴 ) ) → ( ¬ 𝑥 ∈ 𝐵 → 𝑦 <Q 𝑥 ) ) |
4 |
|
prcdnq |
⊢ ( ( 𝐴 ∈ P ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴 ) ) |
5 |
4
|
adantl |
⊢ ( ( ( 𝐵 ∈ P ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐴 ∈ P ∧ 𝑥 ∈ 𝐴 ) ) → ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴 ) ) |
6 |
3 5
|
syld |
⊢ ( ( ( 𝐵 ∈ P ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐴 ∈ P ∧ 𝑥 ∈ 𝐴 ) ) → ( ¬ 𝑥 ∈ 𝐵 → 𝑦 ∈ 𝐴 ) ) |
7 |
6
|
exp43 |
⊢ ( 𝐵 ∈ P → ( 𝑦 ∈ 𝐵 → ( 𝐴 ∈ P → ( 𝑥 ∈ 𝐴 → ( ¬ 𝑥 ∈ 𝐵 → 𝑦 ∈ 𝐴 ) ) ) ) ) |
8 |
7
|
com3r |
⊢ ( 𝐴 ∈ P → ( 𝐵 ∈ P → ( 𝑦 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → ( ¬ 𝑥 ∈ 𝐵 → 𝑦 ∈ 𝐴 ) ) ) ) ) |
9 |
8
|
imp |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑦 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → ( ¬ 𝑥 ∈ 𝐵 → 𝑦 ∈ 𝐴 ) ) ) ) |
10 |
9
|
imp4a |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑦 ∈ 𝐵 → ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) → 𝑦 ∈ 𝐴 ) ) ) |
11 |
10
|
com23 |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐴 ) ) ) |
12 |
11
|
alrimdv |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) → ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐴 ) ) ) |
13 |
12
|
exlimdv |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) → ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐴 ) ) ) |
14 |
|
nss |
⊢ ( ¬ 𝐴 ⊆ 𝐵 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
15 |
|
sspss |
⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) ) |
16 |
14 15
|
xchnxbi |
⊢ ( ¬ ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
17 |
|
sspss |
⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐵 ⊊ 𝐴 ∨ 𝐵 = 𝐴 ) ) |
18 |
|
dfss2 |
⊢ ( 𝐵 ⊆ 𝐴 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐴 ) ) |
19 |
17 18
|
bitr3i |
⊢ ( ( 𝐵 ⊊ 𝐴 ∨ 𝐵 = 𝐴 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐴 ) ) |
20 |
13 16 19
|
3imtr4g |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ¬ ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) → ( 𝐵 ⊊ 𝐴 ∨ 𝐵 = 𝐴 ) ) ) |
21 |
20
|
orrd |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) ∨ ( 𝐵 ⊊ 𝐴 ∨ 𝐵 = 𝐴 ) ) ) |
22 |
|
df-3or |
⊢ ( ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ⊊ 𝐴 ) ↔ ( ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) ∨ 𝐵 ⊊ 𝐴 ) ) |
23 |
|
or32 |
⊢ ( ( ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) ∨ 𝐵 ⊊ 𝐴 ) ↔ ( ( 𝐴 ⊊ 𝐵 ∨ 𝐵 ⊊ 𝐴 ) ∨ 𝐴 = 𝐵 ) ) |
24 |
|
orordir |
⊢ ( ( ( 𝐴 ⊊ 𝐵 ∨ 𝐵 ⊊ 𝐴 ) ∨ 𝐴 = 𝐵 ) ↔ ( ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) ∨ ( 𝐵 ⊊ 𝐴 ∨ 𝐴 = 𝐵 ) ) ) |
25 |
|
eqcom |
⊢ ( 𝐵 = 𝐴 ↔ 𝐴 = 𝐵 ) |
26 |
25
|
orbi2i |
⊢ ( ( 𝐵 ⊊ 𝐴 ∨ 𝐵 = 𝐴 ) ↔ ( 𝐵 ⊊ 𝐴 ∨ 𝐴 = 𝐵 ) ) |
27 |
26
|
orbi2i |
⊢ ( ( ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) ∨ ( 𝐵 ⊊ 𝐴 ∨ 𝐵 = 𝐴 ) ) ↔ ( ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) ∨ ( 𝐵 ⊊ 𝐴 ∨ 𝐴 = 𝐵 ) ) ) |
28 |
24 27
|
bitr4i |
⊢ ( ( ( 𝐴 ⊊ 𝐵 ∨ 𝐵 ⊊ 𝐴 ) ∨ 𝐴 = 𝐵 ) ↔ ( ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) ∨ ( 𝐵 ⊊ 𝐴 ∨ 𝐵 = 𝐴 ) ) ) |
29 |
22 23 28
|
3bitri |
⊢ ( ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ⊊ 𝐴 ) ↔ ( ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) ∨ ( 𝐵 ⊊ 𝐴 ∨ 𝐵 = 𝐴 ) ) ) |
30 |
21 29
|
sylibr |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ⊊ 𝐴 ) ) |