Metamath Proof Explorer


Theorem pssn2lp

Description: Proper subclass has no 2-cycle loops. Compare Theorem 8 of Suppes p. 23. (Contributed by NM, 7-Feb-1996) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion pssn2lp ¬ ( 𝐴𝐵𝐵𝐴 )

Proof

Step Hyp Ref Expression
1 dfpss3 ( 𝐴𝐵 ↔ ( 𝐴𝐵 ∧ ¬ 𝐵𝐴 ) )
2 1 simprbi ( 𝐴𝐵 → ¬ 𝐵𝐴 )
3 pssss ( 𝐵𝐴𝐵𝐴 )
4 2 3 nsyl ( 𝐴𝐵 → ¬ 𝐵𝐴 )
5 imnan ( ( 𝐴𝐵 → ¬ 𝐵𝐴 ) ↔ ¬ ( 𝐴𝐵𝐵𝐴 ) )
6 4 5 mpbi ¬ ( 𝐴𝐵𝐵𝐴 )