Step |
Hyp |
Ref |
Expression |
1 |
|
pssss |
⊢ ( 𝐵 ⊊ 𝐴 → 𝐵 ⊆ 𝐴 ) |
2 |
|
ssexg |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ ω ) → 𝐵 ∈ V ) |
3 |
1 2
|
sylan |
⊢ ( ( 𝐵 ⊊ 𝐴 ∧ 𝐴 ∈ ω ) → 𝐵 ∈ V ) |
4 |
3
|
ancoms |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴 ) → 𝐵 ∈ V ) |
5 |
|
psseq2 |
⊢ ( 𝑧 = ∅ → ( 𝑤 ⊊ 𝑧 ↔ 𝑤 ⊊ ∅ ) ) |
6 |
|
rexeq |
⊢ ( 𝑧 = ∅ → ( ∃ 𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ↔ ∃ 𝑥 ∈ ∅ 𝑤 ≈ 𝑥 ) ) |
7 |
5 6
|
imbi12d |
⊢ ( 𝑧 = ∅ → ( ( 𝑤 ⊊ 𝑧 → ∃ 𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ) ↔ ( 𝑤 ⊊ ∅ → ∃ 𝑥 ∈ ∅ 𝑤 ≈ 𝑥 ) ) ) |
8 |
7
|
albidv |
⊢ ( 𝑧 = ∅ → ( ∀ 𝑤 ( 𝑤 ⊊ 𝑧 → ∃ 𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ) ↔ ∀ 𝑤 ( 𝑤 ⊊ ∅ → ∃ 𝑥 ∈ ∅ 𝑤 ≈ 𝑥 ) ) ) |
9 |
|
psseq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝑤 ⊊ 𝑧 ↔ 𝑤 ⊊ 𝑦 ) ) |
10 |
|
rexeq |
⊢ ( 𝑧 = 𝑦 → ( ∃ 𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ↔ ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) |
11 |
9 10
|
imbi12d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑤 ⊊ 𝑧 → ∃ 𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ) ↔ ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) ) |
12 |
11
|
albidv |
⊢ ( 𝑧 = 𝑦 → ( ∀ 𝑤 ( 𝑤 ⊊ 𝑧 → ∃ 𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ) ↔ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) ) |
13 |
|
psseq2 |
⊢ ( 𝑧 = suc 𝑦 → ( 𝑤 ⊊ 𝑧 ↔ 𝑤 ⊊ suc 𝑦 ) ) |
14 |
|
rexeq |
⊢ ( 𝑧 = suc 𝑦 → ( ∃ 𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ↔ ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) |
15 |
13 14
|
imbi12d |
⊢ ( 𝑧 = suc 𝑦 → ( ( 𝑤 ⊊ 𝑧 → ∃ 𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ) ↔ ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) |
16 |
15
|
albidv |
⊢ ( 𝑧 = suc 𝑦 → ( ∀ 𝑤 ( 𝑤 ⊊ 𝑧 → ∃ 𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ) ↔ ∀ 𝑤 ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) |
17 |
|
psseq2 |
⊢ ( 𝑧 = 𝐴 → ( 𝑤 ⊊ 𝑧 ↔ 𝑤 ⊊ 𝐴 ) ) |
18 |
|
rexeq |
⊢ ( 𝑧 = 𝐴 → ( ∃ 𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ↔ ∃ 𝑥 ∈ 𝐴 𝑤 ≈ 𝑥 ) ) |
19 |
17 18
|
imbi12d |
⊢ ( 𝑧 = 𝐴 → ( ( 𝑤 ⊊ 𝑧 → ∃ 𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ) ↔ ( 𝑤 ⊊ 𝐴 → ∃ 𝑥 ∈ 𝐴 𝑤 ≈ 𝑥 ) ) ) |
20 |
19
|
albidv |
⊢ ( 𝑧 = 𝐴 → ( ∀ 𝑤 ( 𝑤 ⊊ 𝑧 → ∃ 𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ) ↔ ∀ 𝑤 ( 𝑤 ⊊ 𝐴 → ∃ 𝑥 ∈ 𝐴 𝑤 ≈ 𝑥 ) ) ) |
21 |
|
npss0 |
⊢ ¬ 𝑤 ⊊ ∅ |
22 |
21
|
pm2.21i |
⊢ ( 𝑤 ⊊ ∅ → ∃ 𝑥 ∈ ∅ 𝑤 ≈ 𝑥 ) |
23 |
22
|
ax-gen |
⊢ ∀ 𝑤 ( 𝑤 ⊊ ∅ → ∃ 𝑥 ∈ ∅ 𝑤 ≈ 𝑥 ) |
24 |
|
nfv |
⊢ Ⅎ 𝑤 𝑦 ∈ ω |
25 |
|
nfa1 |
⊢ Ⅎ 𝑤 ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) |
26 |
|
elequ1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∈ 𝑤 ↔ 𝑦 ∈ 𝑤 ) ) |
27 |
26
|
biimpcd |
⊢ ( 𝑧 ∈ 𝑤 → ( 𝑧 = 𝑦 → 𝑦 ∈ 𝑤 ) ) |
28 |
27
|
con3d |
⊢ ( 𝑧 ∈ 𝑤 → ( ¬ 𝑦 ∈ 𝑤 → ¬ 𝑧 = 𝑦 ) ) |
29 |
28
|
adantl |
⊢ ( ( 𝑤 ⊊ suc 𝑦 ∧ 𝑧 ∈ 𝑤 ) → ( ¬ 𝑦 ∈ 𝑤 → ¬ 𝑧 = 𝑦 ) ) |
30 |
|
pssss |
⊢ ( 𝑤 ⊊ suc 𝑦 → 𝑤 ⊆ suc 𝑦 ) |
31 |
30
|
sseld |
⊢ ( 𝑤 ⊊ suc 𝑦 → ( 𝑧 ∈ 𝑤 → 𝑧 ∈ suc 𝑦 ) ) |
32 |
|
elsuci |
⊢ ( 𝑧 ∈ suc 𝑦 → ( 𝑧 ∈ 𝑦 ∨ 𝑧 = 𝑦 ) ) |
33 |
32
|
ord |
⊢ ( 𝑧 ∈ suc 𝑦 → ( ¬ 𝑧 ∈ 𝑦 → 𝑧 = 𝑦 ) ) |
34 |
33
|
con1d |
⊢ ( 𝑧 ∈ suc 𝑦 → ( ¬ 𝑧 = 𝑦 → 𝑧 ∈ 𝑦 ) ) |
35 |
31 34
|
syl6 |
⊢ ( 𝑤 ⊊ suc 𝑦 → ( 𝑧 ∈ 𝑤 → ( ¬ 𝑧 = 𝑦 → 𝑧 ∈ 𝑦 ) ) ) |
36 |
35
|
imp |
⊢ ( ( 𝑤 ⊊ suc 𝑦 ∧ 𝑧 ∈ 𝑤 ) → ( ¬ 𝑧 = 𝑦 → 𝑧 ∈ 𝑦 ) ) |
37 |
29 36
|
syld |
⊢ ( ( 𝑤 ⊊ suc 𝑦 ∧ 𝑧 ∈ 𝑤 ) → ( ¬ 𝑦 ∈ 𝑤 → 𝑧 ∈ 𝑦 ) ) |
38 |
37
|
impancom |
⊢ ( ( 𝑤 ⊊ suc 𝑦 ∧ ¬ 𝑦 ∈ 𝑤 ) → ( 𝑧 ∈ 𝑤 → 𝑧 ∈ 𝑦 ) ) |
39 |
38
|
ssrdv |
⊢ ( ( 𝑤 ⊊ suc 𝑦 ∧ ¬ 𝑦 ∈ 𝑤 ) → 𝑤 ⊆ 𝑦 ) |
40 |
39
|
anim1i |
⊢ ( ( ( 𝑤 ⊊ suc 𝑦 ∧ ¬ 𝑦 ∈ 𝑤 ) ∧ ¬ 𝑤 = 𝑦 ) → ( 𝑤 ⊆ 𝑦 ∧ ¬ 𝑤 = 𝑦 ) ) |
41 |
|
dfpss2 |
⊢ ( 𝑤 ⊊ 𝑦 ↔ ( 𝑤 ⊆ 𝑦 ∧ ¬ 𝑤 = 𝑦 ) ) |
42 |
40 41
|
sylibr |
⊢ ( ( ( 𝑤 ⊊ suc 𝑦 ∧ ¬ 𝑦 ∈ 𝑤 ) ∧ ¬ 𝑤 = 𝑦 ) → 𝑤 ⊊ 𝑦 ) |
43 |
|
elelsuc |
⊢ ( 𝑥 ∈ 𝑦 → 𝑥 ∈ suc 𝑦 ) |
44 |
43
|
anim1i |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑤 ≈ 𝑥 ) → ( 𝑥 ∈ suc 𝑦 ∧ 𝑤 ≈ 𝑥 ) ) |
45 |
44
|
reximi2 |
⊢ ( ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) |
46 |
42 45
|
imim12i |
⊢ ( ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) → ( ( ( 𝑤 ⊊ suc 𝑦 ∧ ¬ 𝑦 ∈ 𝑤 ) ∧ ¬ 𝑤 = 𝑦 ) → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) |
47 |
46
|
exp4c |
⊢ ( ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) → ( 𝑤 ⊊ suc 𝑦 → ( ¬ 𝑦 ∈ 𝑤 → ( ¬ 𝑤 = 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) ) |
48 |
47
|
sps |
⊢ ( ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) → ( 𝑤 ⊊ suc 𝑦 → ( ¬ 𝑦 ∈ 𝑤 → ( ¬ 𝑤 = 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) ) |
49 |
48
|
adantl |
⊢ ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) → ( 𝑤 ⊊ suc 𝑦 → ( ¬ 𝑦 ∈ 𝑤 → ( ¬ 𝑤 = 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) ) |
50 |
49
|
com4t |
⊢ ( ¬ 𝑦 ∈ 𝑤 → ( ¬ 𝑤 = 𝑦 → ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) → ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) ) |
51 |
|
anidm |
⊢ ( ( 𝑤 ⊊ suc 𝑦 ∧ 𝑤 ⊊ suc 𝑦 ) ↔ 𝑤 ⊊ suc 𝑦 ) |
52 |
|
ssdif |
⊢ ( 𝑤 ⊆ suc 𝑦 → ( 𝑤 ∖ { 𝑦 } ) ⊆ ( suc 𝑦 ∖ { 𝑦 } ) ) |
53 |
|
nnord |
⊢ ( 𝑦 ∈ ω → Ord 𝑦 ) |
54 |
|
orddif |
⊢ ( Ord 𝑦 → 𝑦 = ( suc 𝑦 ∖ { 𝑦 } ) ) |
55 |
53 54
|
syl |
⊢ ( 𝑦 ∈ ω → 𝑦 = ( suc 𝑦 ∖ { 𝑦 } ) ) |
56 |
55
|
sseq2d |
⊢ ( 𝑦 ∈ ω → ( ( 𝑤 ∖ { 𝑦 } ) ⊆ 𝑦 ↔ ( 𝑤 ∖ { 𝑦 } ) ⊆ ( suc 𝑦 ∖ { 𝑦 } ) ) ) |
57 |
52 56
|
syl5ibr |
⊢ ( 𝑦 ∈ ω → ( 𝑤 ⊆ suc 𝑦 → ( 𝑤 ∖ { 𝑦 } ) ⊆ 𝑦 ) ) |
58 |
30 57
|
syl5 |
⊢ ( 𝑦 ∈ ω → ( 𝑤 ⊊ suc 𝑦 → ( 𝑤 ∖ { 𝑦 } ) ⊆ 𝑦 ) ) |
59 |
|
pssnel |
⊢ ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑧 ( 𝑧 ∈ suc 𝑦 ∧ ¬ 𝑧 ∈ 𝑤 ) ) |
60 |
|
eleq2 |
⊢ ( ( 𝑤 ∖ { 𝑦 } ) = 𝑦 → ( 𝑧 ∈ ( 𝑤 ∖ { 𝑦 } ) ↔ 𝑧 ∈ 𝑦 ) ) |
61 |
|
eldifi |
⊢ ( 𝑧 ∈ ( 𝑤 ∖ { 𝑦 } ) → 𝑧 ∈ 𝑤 ) |
62 |
60 61
|
syl6bir |
⊢ ( ( 𝑤 ∖ { 𝑦 } ) = 𝑦 → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑤 ) ) |
63 |
62
|
adantl |
⊢ ( ( ( 𝑦 ∈ 𝑤 ∧ 𝑧 ∈ suc 𝑦 ) ∧ ( 𝑤 ∖ { 𝑦 } ) = 𝑦 ) → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑤 ) ) |
64 |
|
eleq1a |
⊢ ( 𝑦 ∈ 𝑤 → ( 𝑧 = 𝑦 → 𝑧 ∈ 𝑤 ) ) |
65 |
33 64
|
sylan9r |
⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑧 ∈ suc 𝑦 ) → ( ¬ 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑤 ) ) |
66 |
65
|
adantr |
⊢ ( ( ( 𝑦 ∈ 𝑤 ∧ 𝑧 ∈ suc 𝑦 ) ∧ ( 𝑤 ∖ { 𝑦 } ) = 𝑦 ) → ( ¬ 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑤 ) ) |
67 |
63 66
|
pm2.61d |
⊢ ( ( ( 𝑦 ∈ 𝑤 ∧ 𝑧 ∈ suc 𝑦 ) ∧ ( 𝑤 ∖ { 𝑦 } ) = 𝑦 ) → 𝑧 ∈ 𝑤 ) |
68 |
67
|
ex |
⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑧 ∈ suc 𝑦 ) → ( ( 𝑤 ∖ { 𝑦 } ) = 𝑦 → 𝑧 ∈ 𝑤 ) ) |
69 |
68
|
con3d |
⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑧 ∈ suc 𝑦 ) → ( ¬ 𝑧 ∈ 𝑤 → ¬ ( 𝑤 ∖ { 𝑦 } ) = 𝑦 ) ) |
70 |
69
|
expimpd |
⊢ ( 𝑦 ∈ 𝑤 → ( ( 𝑧 ∈ suc 𝑦 ∧ ¬ 𝑧 ∈ 𝑤 ) → ¬ ( 𝑤 ∖ { 𝑦 } ) = 𝑦 ) ) |
71 |
70
|
exlimdv |
⊢ ( 𝑦 ∈ 𝑤 → ( ∃ 𝑧 ( 𝑧 ∈ suc 𝑦 ∧ ¬ 𝑧 ∈ 𝑤 ) → ¬ ( 𝑤 ∖ { 𝑦 } ) = 𝑦 ) ) |
72 |
59 71
|
syl5 |
⊢ ( 𝑦 ∈ 𝑤 → ( 𝑤 ⊊ suc 𝑦 → ¬ ( 𝑤 ∖ { 𝑦 } ) = 𝑦 ) ) |
73 |
58 72
|
im2anan9r |
⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω ) → ( ( 𝑤 ⊊ suc 𝑦 ∧ 𝑤 ⊊ suc 𝑦 ) → ( ( 𝑤 ∖ { 𝑦 } ) ⊆ 𝑦 ∧ ¬ ( 𝑤 ∖ { 𝑦 } ) = 𝑦 ) ) ) |
74 |
51 73
|
syl5bir |
⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω ) → ( 𝑤 ⊊ suc 𝑦 → ( ( 𝑤 ∖ { 𝑦 } ) ⊆ 𝑦 ∧ ¬ ( 𝑤 ∖ { 𝑦 } ) = 𝑦 ) ) ) |
75 |
|
dfpss2 |
⊢ ( ( 𝑤 ∖ { 𝑦 } ) ⊊ 𝑦 ↔ ( ( 𝑤 ∖ { 𝑦 } ) ⊆ 𝑦 ∧ ¬ ( 𝑤 ∖ { 𝑦 } ) = 𝑦 ) ) |
76 |
74 75
|
syl6ibr |
⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω ) → ( 𝑤 ⊊ suc 𝑦 → ( 𝑤 ∖ { 𝑦 } ) ⊊ 𝑦 ) ) |
77 |
|
psseq1 |
⊢ ( 𝑤 = 𝑧 → ( 𝑤 ⊊ 𝑦 ↔ 𝑧 ⊊ 𝑦 ) ) |
78 |
|
breq1 |
⊢ ( 𝑤 = 𝑧 → ( 𝑤 ≈ 𝑥 ↔ 𝑧 ≈ 𝑥 ) ) |
79 |
78
|
rexbidv |
⊢ ( 𝑤 = 𝑧 → ( ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ↔ ∃ 𝑥 ∈ 𝑦 𝑧 ≈ 𝑥 ) ) |
80 |
77 79
|
imbi12d |
⊢ ( 𝑤 = 𝑧 → ( ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ↔ ( 𝑧 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑧 ≈ 𝑥 ) ) ) |
81 |
80
|
cbvalvw |
⊢ ( ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ↔ ∀ 𝑧 ( 𝑧 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑧 ≈ 𝑥 ) ) |
82 |
|
vex |
⊢ 𝑤 ∈ V |
83 |
82
|
difexi |
⊢ ( 𝑤 ∖ { 𝑦 } ) ∈ V |
84 |
|
psseq1 |
⊢ ( 𝑧 = ( 𝑤 ∖ { 𝑦 } ) → ( 𝑧 ⊊ 𝑦 ↔ ( 𝑤 ∖ { 𝑦 } ) ⊊ 𝑦 ) ) |
85 |
|
breq1 |
⊢ ( 𝑧 = ( 𝑤 ∖ { 𝑦 } ) → ( 𝑧 ≈ 𝑥 ↔ ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ) ) |
86 |
85
|
rexbidv |
⊢ ( 𝑧 = ( 𝑤 ∖ { 𝑦 } ) → ( ∃ 𝑥 ∈ 𝑦 𝑧 ≈ 𝑥 ↔ ∃ 𝑥 ∈ 𝑦 ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ) ) |
87 |
84 86
|
imbi12d |
⊢ ( 𝑧 = ( 𝑤 ∖ { 𝑦 } ) → ( ( 𝑧 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑧 ≈ 𝑥 ) ↔ ( ( 𝑤 ∖ { 𝑦 } ) ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ) ) ) |
88 |
83 87
|
spcv |
⊢ ( ∀ 𝑧 ( 𝑧 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑧 ≈ 𝑥 ) → ( ( 𝑤 ∖ { 𝑦 } ) ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ) ) |
89 |
81 88
|
sylbi |
⊢ ( ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) → ( ( 𝑤 ∖ { 𝑦 } ) ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ) ) |
90 |
76 89
|
sylan9 |
⊢ ( ( ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω ) ∧ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) → ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ 𝑦 ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ) ) |
91 |
|
ordsucelsuc |
⊢ ( Ord 𝑦 → ( 𝑥 ∈ 𝑦 ↔ suc 𝑥 ∈ suc 𝑦 ) ) |
92 |
91
|
biimpd |
⊢ ( Ord 𝑦 → ( 𝑥 ∈ 𝑦 → suc 𝑥 ∈ suc 𝑦 ) ) |
93 |
53 92
|
syl |
⊢ ( 𝑦 ∈ ω → ( 𝑥 ∈ 𝑦 → suc 𝑥 ∈ suc 𝑦 ) ) |
94 |
93
|
adantl |
⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω ) → ( 𝑥 ∈ 𝑦 → suc 𝑥 ∈ suc 𝑦 ) ) |
95 |
94
|
adantrd |
⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω ) → ( ( 𝑥 ∈ 𝑦 ∧ ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ) → suc 𝑥 ∈ suc 𝑦 ) ) |
96 |
|
elnn |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ω ) → 𝑥 ∈ ω ) |
97 |
|
snex |
⊢ { 〈 𝑦 , 𝑥 〉 } ∈ V |
98 |
|
vex |
⊢ 𝑦 ∈ V |
99 |
|
vex |
⊢ 𝑥 ∈ V |
100 |
98 99
|
f1osn |
⊢ { 〈 𝑦 , 𝑥 〉 } : { 𝑦 } –1-1-onto→ { 𝑥 } |
101 |
|
f1oen3g |
⊢ ( ( { 〈 𝑦 , 𝑥 〉 } ∈ V ∧ { 〈 𝑦 , 𝑥 〉 } : { 𝑦 } –1-1-onto→ { 𝑥 } ) → { 𝑦 } ≈ { 𝑥 } ) |
102 |
97 100 101
|
mp2an |
⊢ { 𝑦 } ≈ { 𝑥 } |
103 |
102
|
jctr |
⊢ ( ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 → ( ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ∧ { 𝑦 } ≈ { 𝑥 } ) ) |
104 |
|
nnord |
⊢ ( 𝑥 ∈ ω → Ord 𝑥 ) |
105 |
|
orddisj |
⊢ ( Ord 𝑥 → ( 𝑥 ∩ { 𝑥 } ) = ∅ ) |
106 |
104 105
|
syl |
⊢ ( 𝑥 ∈ ω → ( 𝑥 ∩ { 𝑥 } ) = ∅ ) |
107 |
|
disjdifr |
⊢ ( ( 𝑤 ∖ { 𝑦 } ) ∩ { 𝑦 } ) = ∅ |
108 |
106 107
|
jctil |
⊢ ( 𝑥 ∈ ω → ( ( ( 𝑤 ∖ { 𝑦 } ) ∩ { 𝑦 } ) = ∅ ∧ ( 𝑥 ∩ { 𝑥 } ) = ∅ ) ) |
109 |
|
unen |
⊢ ( ( ( ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ∧ { 𝑦 } ≈ { 𝑥 } ) ∧ ( ( ( 𝑤 ∖ { 𝑦 } ) ∩ { 𝑦 } ) = ∅ ∧ ( 𝑥 ∩ { 𝑥 } ) = ∅ ) ) → ( ( 𝑤 ∖ { 𝑦 } ) ∪ { 𝑦 } ) ≈ ( 𝑥 ∪ { 𝑥 } ) ) |
110 |
103 108 109
|
syl2an |
⊢ ( ( ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ∧ 𝑥 ∈ ω ) → ( ( 𝑤 ∖ { 𝑦 } ) ∪ { 𝑦 } ) ≈ ( 𝑥 ∪ { 𝑥 } ) ) |
111 |
|
difsnid |
⊢ ( 𝑦 ∈ 𝑤 → ( ( 𝑤 ∖ { 𝑦 } ) ∪ { 𝑦 } ) = 𝑤 ) |
112 |
111
|
eqcomd |
⊢ ( 𝑦 ∈ 𝑤 → 𝑤 = ( ( 𝑤 ∖ { 𝑦 } ) ∪ { 𝑦 } ) ) |
113 |
|
df-suc |
⊢ suc 𝑥 = ( 𝑥 ∪ { 𝑥 } ) |
114 |
113
|
a1i |
⊢ ( 𝑦 ∈ 𝑤 → suc 𝑥 = ( 𝑥 ∪ { 𝑥 } ) ) |
115 |
112 114
|
breq12d |
⊢ ( 𝑦 ∈ 𝑤 → ( 𝑤 ≈ suc 𝑥 ↔ ( ( 𝑤 ∖ { 𝑦 } ) ∪ { 𝑦 } ) ≈ ( 𝑥 ∪ { 𝑥 } ) ) ) |
116 |
110 115
|
syl5ibr |
⊢ ( 𝑦 ∈ 𝑤 → ( ( ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ∧ 𝑥 ∈ ω ) → 𝑤 ≈ suc 𝑥 ) ) |
117 |
96 116
|
sylan2i |
⊢ ( 𝑦 ∈ 𝑤 → ( ( ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ∧ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ω ) ) → 𝑤 ≈ suc 𝑥 ) ) |
118 |
117
|
exp4d |
⊢ ( 𝑦 ∈ 𝑤 → ( ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 → ( 𝑥 ∈ 𝑦 → ( 𝑦 ∈ ω → 𝑤 ≈ suc 𝑥 ) ) ) ) |
119 |
118
|
com24 |
⊢ ( 𝑦 ∈ 𝑤 → ( 𝑦 ∈ ω → ( 𝑥 ∈ 𝑦 → ( ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 → 𝑤 ≈ suc 𝑥 ) ) ) ) |
120 |
119
|
imp4b |
⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω ) → ( ( 𝑥 ∈ 𝑦 ∧ ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ) → 𝑤 ≈ suc 𝑥 ) ) |
121 |
95 120
|
jcad |
⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω ) → ( ( 𝑥 ∈ 𝑦 ∧ ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ) → ( suc 𝑥 ∈ suc 𝑦 ∧ 𝑤 ≈ suc 𝑥 ) ) ) |
122 |
|
breq2 |
⊢ ( 𝑧 = suc 𝑥 → ( 𝑤 ≈ 𝑧 ↔ 𝑤 ≈ suc 𝑥 ) ) |
123 |
122
|
rspcev |
⊢ ( ( suc 𝑥 ∈ suc 𝑦 ∧ 𝑤 ≈ suc 𝑥 ) → ∃ 𝑧 ∈ suc 𝑦 𝑤 ≈ 𝑧 ) |
124 |
121 123
|
syl6 |
⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω ) → ( ( 𝑥 ∈ 𝑦 ∧ ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ) → ∃ 𝑧 ∈ suc 𝑦 𝑤 ≈ 𝑧 ) ) |
125 |
124
|
exlimdv |
⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω ) → ( ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ) → ∃ 𝑧 ∈ suc 𝑦 𝑤 ≈ 𝑧 ) ) |
126 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝑦 ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ) ) |
127 |
|
breq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑤 ≈ 𝑥 ↔ 𝑤 ≈ 𝑧 ) ) |
128 |
127
|
cbvrexvw |
⊢ ( ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ↔ ∃ 𝑧 ∈ suc 𝑦 𝑤 ≈ 𝑧 ) |
129 |
125 126 128
|
3imtr4g |
⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω ) → ( ∃ 𝑥 ∈ 𝑦 ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) |
130 |
129
|
adantr |
⊢ ( ( ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω ) ∧ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) → ( ∃ 𝑥 ∈ 𝑦 ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) |
131 |
90 130
|
syld |
⊢ ( ( ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω ) ∧ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) → ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) |
132 |
131
|
expl |
⊢ ( 𝑦 ∈ 𝑤 → ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) → ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) |
133 |
|
eleq1w |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ∈ ω ↔ 𝑦 ∈ ω ) ) |
134 |
133
|
pm5.32i |
⊢ ( ( 𝑤 = 𝑦 ∧ 𝑤 ∈ ω ) ↔ ( 𝑤 = 𝑦 ∧ 𝑦 ∈ ω ) ) |
135 |
82
|
eqelsuc |
⊢ ( 𝑤 = 𝑦 → 𝑤 ∈ suc 𝑦 ) |
136 |
|
enrefnn |
⊢ ( 𝑤 ∈ ω → 𝑤 ≈ 𝑤 ) |
137 |
|
breq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝑤 ≈ 𝑥 ↔ 𝑤 ≈ 𝑤 ) ) |
138 |
137
|
rspcev |
⊢ ( ( 𝑤 ∈ suc 𝑦 ∧ 𝑤 ≈ 𝑤 ) → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) |
139 |
135 136 138
|
syl2an |
⊢ ( ( 𝑤 = 𝑦 ∧ 𝑤 ∈ ω ) → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) |
140 |
139
|
2a1d |
⊢ ( ( 𝑤 = 𝑦 ∧ 𝑤 ∈ ω ) → ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) → ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) |
141 |
134 140
|
sylbir |
⊢ ( ( 𝑤 = 𝑦 ∧ 𝑦 ∈ ω ) → ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) → ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) |
142 |
141
|
ex |
⊢ ( 𝑤 = 𝑦 → ( 𝑦 ∈ ω → ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) → ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) ) |
143 |
142
|
adantrd |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) → ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) → ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) ) |
144 |
143
|
pm2.43d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) → ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) |
145 |
50 132 144
|
pm2.61ii |
⊢ ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) → ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) |
146 |
145
|
ex |
⊢ ( 𝑦 ∈ ω → ( ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) → ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) |
147 |
24 25 146
|
alrimd |
⊢ ( 𝑦 ∈ ω → ( ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) → ∀ 𝑤 ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) |
148 |
8 12 16 20 23 147
|
finds |
⊢ ( 𝐴 ∈ ω → ∀ 𝑤 ( 𝑤 ⊊ 𝐴 → ∃ 𝑥 ∈ 𝐴 𝑤 ≈ 𝑥 ) ) |
149 |
|
psseq1 |
⊢ ( 𝑤 = 𝐵 → ( 𝑤 ⊊ 𝐴 ↔ 𝐵 ⊊ 𝐴 ) ) |
150 |
|
breq1 |
⊢ ( 𝑤 = 𝐵 → ( 𝑤 ≈ 𝑥 ↔ 𝐵 ≈ 𝑥 ) ) |
151 |
150
|
rexbidv |
⊢ ( 𝑤 = 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝑤 ≈ 𝑥 ↔ ∃ 𝑥 ∈ 𝐴 𝐵 ≈ 𝑥 ) ) |
152 |
149 151
|
imbi12d |
⊢ ( 𝑤 = 𝐵 → ( ( 𝑤 ⊊ 𝐴 → ∃ 𝑥 ∈ 𝐴 𝑤 ≈ 𝑥 ) ↔ ( 𝐵 ⊊ 𝐴 → ∃ 𝑥 ∈ 𝐴 𝐵 ≈ 𝑥 ) ) ) |
153 |
152
|
spcgv |
⊢ ( 𝐵 ∈ V → ( ∀ 𝑤 ( 𝑤 ⊊ 𝐴 → ∃ 𝑥 ∈ 𝐴 𝑤 ≈ 𝑥 ) → ( 𝐵 ⊊ 𝐴 → ∃ 𝑥 ∈ 𝐴 𝐵 ≈ 𝑥 ) ) ) |
154 |
148 153
|
syl5 |
⊢ ( 𝐵 ∈ V → ( 𝐴 ∈ ω → ( 𝐵 ⊊ 𝐴 → ∃ 𝑥 ∈ 𝐴 𝐵 ≈ 𝑥 ) ) ) |
155 |
154
|
com3l |
⊢ ( 𝐴 ∈ ω → ( 𝐵 ⊊ 𝐴 → ( 𝐵 ∈ V → ∃ 𝑥 ∈ 𝐴 𝐵 ≈ 𝑥 ) ) ) |
156 |
155
|
imp |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴 ) → ( 𝐵 ∈ V → ∃ 𝑥 ∈ 𝐴 𝐵 ≈ 𝑥 ) ) |
157 |
4 156
|
mpd |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴 ) → ∃ 𝑥 ∈ 𝐴 𝐵 ≈ 𝑥 ) |