| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pssss |
⊢ ( 𝐵 ⊊ 𝐴 → 𝐵 ⊆ 𝐴 ) |
| 2 |
|
ssexg |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ ω ) → 𝐵 ∈ V ) |
| 3 |
1 2
|
sylan |
⊢ ( ( 𝐵 ⊊ 𝐴 ∧ 𝐴 ∈ ω ) → 𝐵 ∈ V ) |
| 4 |
3
|
ancoms |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴 ) → 𝐵 ∈ V ) |
| 5 |
|
psseq2 |
⊢ ( 𝑧 = ∅ → ( 𝑤 ⊊ 𝑧 ↔ 𝑤 ⊊ ∅ ) ) |
| 6 |
|
rexeq |
⊢ ( 𝑧 = ∅ → ( ∃ 𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ↔ ∃ 𝑥 ∈ ∅ 𝑤 ≈ 𝑥 ) ) |
| 7 |
5 6
|
imbi12d |
⊢ ( 𝑧 = ∅ → ( ( 𝑤 ⊊ 𝑧 → ∃ 𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ) ↔ ( 𝑤 ⊊ ∅ → ∃ 𝑥 ∈ ∅ 𝑤 ≈ 𝑥 ) ) ) |
| 8 |
7
|
albidv |
⊢ ( 𝑧 = ∅ → ( ∀ 𝑤 ( 𝑤 ⊊ 𝑧 → ∃ 𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ) ↔ ∀ 𝑤 ( 𝑤 ⊊ ∅ → ∃ 𝑥 ∈ ∅ 𝑤 ≈ 𝑥 ) ) ) |
| 9 |
|
psseq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝑤 ⊊ 𝑧 ↔ 𝑤 ⊊ 𝑦 ) ) |
| 10 |
|
rexeq |
⊢ ( 𝑧 = 𝑦 → ( ∃ 𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ↔ ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) |
| 11 |
9 10
|
imbi12d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑤 ⊊ 𝑧 → ∃ 𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ) ↔ ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) ) |
| 12 |
11
|
albidv |
⊢ ( 𝑧 = 𝑦 → ( ∀ 𝑤 ( 𝑤 ⊊ 𝑧 → ∃ 𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ) ↔ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) ) |
| 13 |
|
psseq2 |
⊢ ( 𝑧 = suc 𝑦 → ( 𝑤 ⊊ 𝑧 ↔ 𝑤 ⊊ suc 𝑦 ) ) |
| 14 |
|
rexeq |
⊢ ( 𝑧 = suc 𝑦 → ( ∃ 𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ↔ ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) |
| 15 |
13 14
|
imbi12d |
⊢ ( 𝑧 = suc 𝑦 → ( ( 𝑤 ⊊ 𝑧 → ∃ 𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ) ↔ ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) |
| 16 |
15
|
albidv |
⊢ ( 𝑧 = suc 𝑦 → ( ∀ 𝑤 ( 𝑤 ⊊ 𝑧 → ∃ 𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ) ↔ ∀ 𝑤 ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) |
| 17 |
|
psseq2 |
⊢ ( 𝑧 = 𝐴 → ( 𝑤 ⊊ 𝑧 ↔ 𝑤 ⊊ 𝐴 ) ) |
| 18 |
|
rexeq |
⊢ ( 𝑧 = 𝐴 → ( ∃ 𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ↔ ∃ 𝑥 ∈ 𝐴 𝑤 ≈ 𝑥 ) ) |
| 19 |
17 18
|
imbi12d |
⊢ ( 𝑧 = 𝐴 → ( ( 𝑤 ⊊ 𝑧 → ∃ 𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ) ↔ ( 𝑤 ⊊ 𝐴 → ∃ 𝑥 ∈ 𝐴 𝑤 ≈ 𝑥 ) ) ) |
| 20 |
19
|
albidv |
⊢ ( 𝑧 = 𝐴 → ( ∀ 𝑤 ( 𝑤 ⊊ 𝑧 → ∃ 𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ) ↔ ∀ 𝑤 ( 𝑤 ⊊ 𝐴 → ∃ 𝑥 ∈ 𝐴 𝑤 ≈ 𝑥 ) ) ) |
| 21 |
|
npss0 |
⊢ ¬ 𝑤 ⊊ ∅ |
| 22 |
21
|
pm2.21i |
⊢ ( 𝑤 ⊊ ∅ → ∃ 𝑥 ∈ ∅ 𝑤 ≈ 𝑥 ) |
| 23 |
22
|
ax-gen |
⊢ ∀ 𝑤 ( 𝑤 ⊊ ∅ → ∃ 𝑥 ∈ ∅ 𝑤 ≈ 𝑥 ) |
| 24 |
|
nfv |
⊢ Ⅎ 𝑤 𝑦 ∈ ω |
| 25 |
|
nfa1 |
⊢ Ⅎ 𝑤 ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) |
| 26 |
|
elequ1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∈ 𝑤 ↔ 𝑦 ∈ 𝑤 ) ) |
| 27 |
26
|
biimpcd |
⊢ ( 𝑧 ∈ 𝑤 → ( 𝑧 = 𝑦 → 𝑦 ∈ 𝑤 ) ) |
| 28 |
27
|
con3d |
⊢ ( 𝑧 ∈ 𝑤 → ( ¬ 𝑦 ∈ 𝑤 → ¬ 𝑧 = 𝑦 ) ) |
| 29 |
28
|
adantl |
⊢ ( ( 𝑤 ⊊ suc 𝑦 ∧ 𝑧 ∈ 𝑤 ) → ( ¬ 𝑦 ∈ 𝑤 → ¬ 𝑧 = 𝑦 ) ) |
| 30 |
|
pssss |
⊢ ( 𝑤 ⊊ suc 𝑦 → 𝑤 ⊆ suc 𝑦 ) |
| 31 |
30
|
sseld |
⊢ ( 𝑤 ⊊ suc 𝑦 → ( 𝑧 ∈ 𝑤 → 𝑧 ∈ suc 𝑦 ) ) |
| 32 |
|
elsuci |
⊢ ( 𝑧 ∈ suc 𝑦 → ( 𝑧 ∈ 𝑦 ∨ 𝑧 = 𝑦 ) ) |
| 33 |
32
|
ord |
⊢ ( 𝑧 ∈ suc 𝑦 → ( ¬ 𝑧 ∈ 𝑦 → 𝑧 = 𝑦 ) ) |
| 34 |
33
|
con1d |
⊢ ( 𝑧 ∈ suc 𝑦 → ( ¬ 𝑧 = 𝑦 → 𝑧 ∈ 𝑦 ) ) |
| 35 |
31 34
|
syl6 |
⊢ ( 𝑤 ⊊ suc 𝑦 → ( 𝑧 ∈ 𝑤 → ( ¬ 𝑧 = 𝑦 → 𝑧 ∈ 𝑦 ) ) ) |
| 36 |
35
|
imp |
⊢ ( ( 𝑤 ⊊ suc 𝑦 ∧ 𝑧 ∈ 𝑤 ) → ( ¬ 𝑧 = 𝑦 → 𝑧 ∈ 𝑦 ) ) |
| 37 |
29 36
|
syld |
⊢ ( ( 𝑤 ⊊ suc 𝑦 ∧ 𝑧 ∈ 𝑤 ) → ( ¬ 𝑦 ∈ 𝑤 → 𝑧 ∈ 𝑦 ) ) |
| 38 |
37
|
impancom |
⊢ ( ( 𝑤 ⊊ suc 𝑦 ∧ ¬ 𝑦 ∈ 𝑤 ) → ( 𝑧 ∈ 𝑤 → 𝑧 ∈ 𝑦 ) ) |
| 39 |
38
|
ssrdv |
⊢ ( ( 𝑤 ⊊ suc 𝑦 ∧ ¬ 𝑦 ∈ 𝑤 ) → 𝑤 ⊆ 𝑦 ) |
| 40 |
39
|
anim1i |
⊢ ( ( ( 𝑤 ⊊ suc 𝑦 ∧ ¬ 𝑦 ∈ 𝑤 ) ∧ ¬ 𝑤 = 𝑦 ) → ( 𝑤 ⊆ 𝑦 ∧ ¬ 𝑤 = 𝑦 ) ) |
| 41 |
|
dfpss2 |
⊢ ( 𝑤 ⊊ 𝑦 ↔ ( 𝑤 ⊆ 𝑦 ∧ ¬ 𝑤 = 𝑦 ) ) |
| 42 |
40 41
|
sylibr |
⊢ ( ( ( 𝑤 ⊊ suc 𝑦 ∧ ¬ 𝑦 ∈ 𝑤 ) ∧ ¬ 𝑤 = 𝑦 ) → 𝑤 ⊊ 𝑦 ) |
| 43 |
|
elelsuc |
⊢ ( 𝑥 ∈ 𝑦 → 𝑥 ∈ suc 𝑦 ) |
| 44 |
43
|
anim1i |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑤 ≈ 𝑥 ) → ( 𝑥 ∈ suc 𝑦 ∧ 𝑤 ≈ 𝑥 ) ) |
| 45 |
44
|
reximi2 |
⊢ ( ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) |
| 46 |
42 45
|
imim12i |
⊢ ( ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) → ( ( ( 𝑤 ⊊ suc 𝑦 ∧ ¬ 𝑦 ∈ 𝑤 ) ∧ ¬ 𝑤 = 𝑦 ) → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) |
| 47 |
46
|
exp4c |
⊢ ( ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) → ( 𝑤 ⊊ suc 𝑦 → ( ¬ 𝑦 ∈ 𝑤 → ( ¬ 𝑤 = 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) ) |
| 48 |
47
|
sps |
⊢ ( ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) → ( 𝑤 ⊊ suc 𝑦 → ( ¬ 𝑦 ∈ 𝑤 → ( ¬ 𝑤 = 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) ) |
| 49 |
48
|
adantl |
⊢ ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) → ( 𝑤 ⊊ suc 𝑦 → ( ¬ 𝑦 ∈ 𝑤 → ( ¬ 𝑤 = 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) ) |
| 50 |
49
|
com4t |
⊢ ( ¬ 𝑦 ∈ 𝑤 → ( ¬ 𝑤 = 𝑦 → ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) → ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) ) |
| 51 |
|
anidm |
⊢ ( ( 𝑤 ⊊ suc 𝑦 ∧ 𝑤 ⊊ suc 𝑦 ) ↔ 𝑤 ⊊ suc 𝑦 ) |
| 52 |
|
ssdif |
⊢ ( 𝑤 ⊆ suc 𝑦 → ( 𝑤 ∖ { 𝑦 } ) ⊆ ( suc 𝑦 ∖ { 𝑦 } ) ) |
| 53 |
|
nnord |
⊢ ( 𝑦 ∈ ω → Ord 𝑦 ) |
| 54 |
|
orddif |
⊢ ( Ord 𝑦 → 𝑦 = ( suc 𝑦 ∖ { 𝑦 } ) ) |
| 55 |
53 54
|
syl |
⊢ ( 𝑦 ∈ ω → 𝑦 = ( suc 𝑦 ∖ { 𝑦 } ) ) |
| 56 |
55
|
sseq2d |
⊢ ( 𝑦 ∈ ω → ( ( 𝑤 ∖ { 𝑦 } ) ⊆ 𝑦 ↔ ( 𝑤 ∖ { 𝑦 } ) ⊆ ( suc 𝑦 ∖ { 𝑦 } ) ) ) |
| 57 |
52 56
|
imbitrrid |
⊢ ( 𝑦 ∈ ω → ( 𝑤 ⊆ suc 𝑦 → ( 𝑤 ∖ { 𝑦 } ) ⊆ 𝑦 ) ) |
| 58 |
30 57
|
syl5 |
⊢ ( 𝑦 ∈ ω → ( 𝑤 ⊊ suc 𝑦 → ( 𝑤 ∖ { 𝑦 } ) ⊆ 𝑦 ) ) |
| 59 |
|
pssnel |
⊢ ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑧 ( 𝑧 ∈ suc 𝑦 ∧ ¬ 𝑧 ∈ 𝑤 ) ) |
| 60 |
|
eleq2 |
⊢ ( ( 𝑤 ∖ { 𝑦 } ) = 𝑦 → ( 𝑧 ∈ ( 𝑤 ∖ { 𝑦 } ) ↔ 𝑧 ∈ 𝑦 ) ) |
| 61 |
|
eldifi |
⊢ ( 𝑧 ∈ ( 𝑤 ∖ { 𝑦 } ) → 𝑧 ∈ 𝑤 ) |
| 62 |
60 61
|
biimtrrdi |
⊢ ( ( 𝑤 ∖ { 𝑦 } ) = 𝑦 → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑤 ) ) |
| 63 |
62
|
adantl |
⊢ ( ( ( 𝑦 ∈ 𝑤 ∧ 𝑧 ∈ suc 𝑦 ) ∧ ( 𝑤 ∖ { 𝑦 } ) = 𝑦 ) → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑤 ) ) |
| 64 |
|
eleq1a |
⊢ ( 𝑦 ∈ 𝑤 → ( 𝑧 = 𝑦 → 𝑧 ∈ 𝑤 ) ) |
| 65 |
33 64
|
sylan9r |
⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑧 ∈ suc 𝑦 ) → ( ¬ 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑤 ) ) |
| 66 |
65
|
adantr |
⊢ ( ( ( 𝑦 ∈ 𝑤 ∧ 𝑧 ∈ suc 𝑦 ) ∧ ( 𝑤 ∖ { 𝑦 } ) = 𝑦 ) → ( ¬ 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑤 ) ) |
| 67 |
63 66
|
pm2.61d |
⊢ ( ( ( 𝑦 ∈ 𝑤 ∧ 𝑧 ∈ suc 𝑦 ) ∧ ( 𝑤 ∖ { 𝑦 } ) = 𝑦 ) → 𝑧 ∈ 𝑤 ) |
| 68 |
67
|
ex |
⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑧 ∈ suc 𝑦 ) → ( ( 𝑤 ∖ { 𝑦 } ) = 𝑦 → 𝑧 ∈ 𝑤 ) ) |
| 69 |
68
|
con3d |
⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑧 ∈ suc 𝑦 ) → ( ¬ 𝑧 ∈ 𝑤 → ¬ ( 𝑤 ∖ { 𝑦 } ) = 𝑦 ) ) |
| 70 |
69
|
expimpd |
⊢ ( 𝑦 ∈ 𝑤 → ( ( 𝑧 ∈ suc 𝑦 ∧ ¬ 𝑧 ∈ 𝑤 ) → ¬ ( 𝑤 ∖ { 𝑦 } ) = 𝑦 ) ) |
| 71 |
70
|
exlimdv |
⊢ ( 𝑦 ∈ 𝑤 → ( ∃ 𝑧 ( 𝑧 ∈ suc 𝑦 ∧ ¬ 𝑧 ∈ 𝑤 ) → ¬ ( 𝑤 ∖ { 𝑦 } ) = 𝑦 ) ) |
| 72 |
59 71
|
syl5 |
⊢ ( 𝑦 ∈ 𝑤 → ( 𝑤 ⊊ suc 𝑦 → ¬ ( 𝑤 ∖ { 𝑦 } ) = 𝑦 ) ) |
| 73 |
58 72
|
im2anan9r |
⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω ) → ( ( 𝑤 ⊊ suc 𝑦 ∧ 𝑤 ⊊ suc 𝑦 ) → ( ( 𝑤 ∖ { 𝑦 } ) ⊆ 𝑦 ∧ ¬ ( 𝑤 ∖ { 𝑦 } ) = 𝑦 ) ) ) |
| 74 |
51 73
|
biimtrrid |
⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω ) → ( 𝑤 ⊊ suc 𝑦 → ( ( 𝑤 ∖ { 𝑦 } ) ⊆ 𝑦 ∧ ¬ ( 𝑤 ∖ { 𝑦 } ) = 𝑦 ) ) ) |
| 75 |
|
dfpss2 |
⊢ ( ( 𝑤 ∖ { 𝑦 } ) ⊊ 𝑦 ↔ ( ( 𝑤 ∖ { 𝑦 } ) ⊆ 𝑦 ∧ ¬ ( 𝑤 ∖ { 𝑦 } ) = 𝑦 ) ) |
| 76 |
74 75
|
imbitrrdi |
⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω ) → ( 𝑤 ⊊ suc 𝑦 → ( 𝑤 ∖ { 𝑦 } ) ⊊ 𝑦 ) ) |
| 77 |
|
psseq1 |
⊢ ( 𝑤 = 𝑧 → ( 𝑤 ⊊ 𝑦 ↔ 𝑧 ⊊ 𝑦 ) ) |
| 78 |
|
breq1 |
⊢ ( 𝑤 = 𝑧 → ( 𝑤 ≈ 𝑥 ↔ 𝑧 ≈ 𝑥 ) ) |
| 79 |
78
|
rexbidv |
⊢ ( 𝑤 = 𝑧 → ( ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ↔ ∃ 𝑥 ∈ 𝑦 𝑧 ≈ 𝑥 ) ) |
| 80 |
77 79
|
imbi12d |
⊢ ( 𝑤 = 𝑧 → ( ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ↔ ( 𝑧 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑧 ≈ 𝑥 ) ) ) |
| 81 |
80
|
cbvalvw |
⊢ ( ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ↔ ∀ 𝑧 ( 𝑧 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑧 ≈ 𝑥 ) ) |
| 82 |
|
vex |
⊢ 𝑤 ∈ V |
| 83 |
82
|
difexi |
⊢ ( 𝑤 ∖ { 𝑦 } ) ∈ V |
| 84 |
|
psseq1 |
⊢ ( 𝑧 = ( 𝑤 ∖ { 𝑦 } ) → ( 𝑧 ⊊ 𝑦 ↔ ( 𝑤 ∖ { 𝑦 } ) ⊊ 𝑦 ) ) |
| 85 |
|
breq1 |
⊢ ( 𝑧 = ( 𝑤 ∖ { 𝑦 } ) → ( 𝑧 ≈ 𝑥 ↔ ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ) ) |
| 86 |
85
|
rexbidv |
⊢ ( 𝑧 = ( 𝑤 ∖ { 𝑦 } ) → ( ∃ 𝑥 ∈ 𝑦 𝑧 ≈ 𝑥 ↔ ∃ 𝑥 ∈ 𝑦 ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ) ) |
| 87 |
84 86
|
imbi12d |
⊢ ( 𝑧 = ( 𝑤 ∖ { 𝑦 } ) → ( ( 𝑧 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑧 ≈ 𝑥 ) ↔ ( ( 𝑤 ∖ { 𝑦 } ) ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ) ) ) |
| 88 |
83 87
|
spcv |
⊢ ( ∀ 𝑧 ( 𝑧 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑧 ≈ 𝑥 ) → ( ( 𝑤 ∖ { 𝑦 } ) ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ) ) |
| 89 |
81 88
|
sylbi |
⊢ ( ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) → ( ( 𝑤 ∖ { 𝑦 } ) ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ) ) |
| 90 |
76 89
|
sylan9 |
⊢ ( ( ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω ) ∧ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) → ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ 𝑦 ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ) ) |
| 91 |
|
ordsucelsuc |
⊢ ( Ord 𝑦 → ( 𝑥 ∈ 𝑦 ↔ suc 𝑥 ∈ suc 𝑦 ) ) |
| 92 |
91
|
biimpd |
⊢ ( Ord 𝑦 → ( 𝑥 ∈ 𝑦 → suc 𝑥 ∈ suc 𝑦 ) ) |
| 93 |
53 92
|
syl |
⊢ ( 𝑦 ∈ ω → ( 𝑥 ∈ 𝑦 → suc 𝑥 ∈ suc 𝑦 ) ) |
| 94 |
93
|
adantl |
⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω ) → ( 𝑥 ∈ 𝑦 → suc 𝑥 ∈ suc 𝑦 ) ) |
| 95 |
94
|
adantrd |
⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω ) → ( ( 𝑥 ∈ 𝑦 ∧ ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ) → suc 𝑥 ∈ suc 𝑦 ) ) |
| 96 |
|
elnn |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ω ) → 𝑥 ∈ ω ) |
| 97 |
|
snex |
⊢ { 〈 𝑦 , 𝑥 〉 } ∈ V |
| 98 |
|
vex |
⊢ 𝑦 ∈ V |
| 99 |
|
vex |
⊢ 𝑥 ∈ V |
| 100 |
98 99
|
f1osn |
⊢ { 〈 𝑦 , 𝑥 〉 } : { 𝑦 } –1-1-onto→ { 𝑥 } |
| 101 |
|
f1oen3g |
⊢ ( ( { 〈 𝑦 , 𝑥 〉 } ∈ V ∧ { 〈 𝑦 , 𝑥 〉 } : { 𝑦 } –1-1-onto→ { 𝑥 } ) → { 𝑦 } ≈ { 𝑥 } ) |
| 102 |
97 100 101
|
mp2an |
⊢ { 𝑦 } ≈ { 𝑥 } |
| 103 |
102
|
jctr |
⊢ ( ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 → ( ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ∧ { 𝑦 } ≈ { 𝑥 } ) ) |
| 104 |
|
nnord |
⊢ ( 𝑥 ∈ ω → Ord 𝑥 ) |
| 105 |
|
orddisj |
⊢ ( Ord 𝑥 → ( 𝑥 ∩ { 𝑥 } ) = ∅ ) |
| 106 |
104 105
|
syl |
⊢ ( 𝑥 ∈ ω → ( 𝑥 ∩ { 𝑥 } ) = ∅ ) |
| 107 |
|
disjdifr |
⊢ ( ( 𝑤 ∖ { 𝑦 } ) ∩ { 𝑦 } ) = ∅ |
| 108 |
106 107
|
jctil |
⊢ ( 𝑥 ∈ ω → ( ( ( 𝑤 ∖ { 𝑦 } ) ∩ { 𝑦 } ) = ∅ ∧ ( 𝑥 ∩ { 𝑥 } ) = ∅ ) ) |
| 109 |
|
unen |
⊢ ( ( ( ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ∧ { 𝑦 } ≈ { 𝑥 } ) ∧ ( ( ( 𝑤 ∖ { 𝑦 } ) ∩ { 𝑦 } ) = ∅ ∧ ( 𝑥 ∩ { 𝑥 } ) = ∅ ) ) → ( ( 𝑤 ∖ { 𝑦 } ) ∪ { 𝑦 } ) ≈ ( 𝑥 ∪ { 𝑥 } ) ) |
| 110 |
103 108 109
|
syl2an |
⊢ ( ( ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ∧ 𝑥 ∈ ω ) → ( ( 𝑤 ∖ { 𝑦 } ) ∪ { 𝑦 } ) ≈ ( 𝑥 ∪ { 𝑥 } ) ) |
| 111 |
|
difsnid |
⊢ ( 𝑦 ∈ 𝑤 → ( ( 𝑤 ∖ { 𝑦 } ) ∪ { 𝑦 } ) = 𝑤 ) |
| 112 |
111
|
eqcomd |
⊢ ( 𝑦 ∈ 𝑤 → 𝑤 = ( ( 𝑤 ∖ { 𝑦 } ) ∪ { 𝑦 } ) ) |
| 113 |
|
df-suc |
⊢ suc 𝑥 = ( 𝑥 ∪ { 𝑥 } ) |
| 114 |
113
|
a1i |
⊢ ( 𝑦 ∈ 𝑤 → suc 𝑥 = ( 𝑥 ∪ { 𝑥 } ) ) |
| 115 |
112 114
|
breq12d |
⊢ ( 𝑦 ∈ 𝑤 → ( 𝑤 ≈ suc 𝑥 ↔ ( ( 𝑤 ∖ { 𝑦 } ) ∪ { 𝑦 } ) ≈ ( 𝑥 ∪ { 𝑥 } ) ) ) |
| 116 |
110 115
|
imbitrrid |
⊢ ( 𝑦 ∈ 𝑤 → ( ( ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ∧ 𝑥 ∈ ω ) → 𝑤 ≈ suc 𝑥 ) ) |
| 117 |
96 116
|
sylan2i |
⊢ ( 𝑦 ∈ 𝑤 → ( ( ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ∧ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ω ) ) → 𝑤 ≈ suc 𝑥 ) ) |
| 118 |
117
|
exp4d |
⊢ ( 𝑦 ∈ 𝑤 → ( ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 → ( 𝑥 ∈ 𝑦 → ( 𝑦 ∈ ω → 𝑤 ≈ suc 𝑥 ) ) ) ) |
| 119 |
118
|
com24 |
⊢ ( 𝑦 ∈ 𝑤 → ( 𝑦 ∈ ω → ( 𝑥 ∈ 𝑦 → ( ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 → 𝑤 ≈ suc 𝑥 ) ) ) ) |
| 120 |
119
|
imp4b |
⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω ) → ( ( 𝑥 ∈ 𝑦 ∧ ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ) → 𝑤 ≈ suc 𝑥 ) ) |
| 121 |
95 120
|
jcad |
⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω ) → ( ( 𝑥 ∈ 𝑦 ∧ ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ) → ( suc 𝑥 ∈ suc 𝑦 ∧ 𝑤 ≈ suc 𝑥 ) ) ) |
| 122 |
|
breq2 |
⊢ ( 𝑧 = suc 𝑥 → ( 𝑤 ≈ 𝑧 ↔ 𝑤 ≈ suc 𝑥 ) ) |
| 123 |
122
|
rspcev |
⊢ ( ( suc 𝑥 ∈ suc 𝑦 ∧ 𝑤 ≈ suc 𝑥 ) → ∃ 𝑧 ∈ suc 𝑦 𝑤 ≈ 𝑧 ) |
| 124 |
121 123
|
syl6 |
⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω ) → ( ( 𝑥 ∈ 𝑦 ∧ ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ) → ∃ 𝑧 ∈ suc 𝑦 𝑤 ≈ 𝑧 ) ) |
| 125 |
124
|
exlimdv |
⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω ) → ( ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ) → ∃ 𝑧 ∈ suc 𝑦 𝑤 ≈ 𝑧 ) ) |
| 126 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝑦 ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ) ) |
| 127 |
|
breq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑤 ≈ 𝑥 ↔ 𝑤 ≈ 𝑧 ) ) |
| 128 |
127
|
cbvrexvw |
⊢ ( ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ↔ ∃ 𝑧 ∈ suc 𝑦 𝑤 ≈ 𝑧 ) |
| 129 |
125 126 128
|
3imtr4g |
⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω ) → ( ∃ 𝑥 ∈ 𝑦 ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) |
| 130 |
129
|
adantr |
⊢ ( ( ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω ) ∧ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) → ( ∃ 𝑥 ∈ 𝑦 ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) |
| 131 |
90 130
|
syld |
⊢ ( ( ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω ) ∧ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) → ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) |
| 132 |
131
|
expl |
⊢ ( 𝑦 ∈ 𝑤 → ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) → ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) |
| 133 |
|
eleq1w |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ∈ ω ↔ 𝑦 ∈ ω ) ) |
| 134 |
133
|
pm5.32i |
⊢ ( ( 𝑤 = 𝑦 ∧ 𝑤 ∈ ω ) ↔ ( 𝑤 = 𝑦 ∧ 𝑦 ∈ ω ) ) |
| 135 |
82
|
eqelsuc |
⊢ ( 𝑤 = 𝑦 → 𝑤 ∈ suc 𝑦 ) |
| 136 |
|
enrefnn |
⊢ ( 𝑤 ∈ ω → 𝑤 ≈ 𝑤 ) |
| 137 |
|
breq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝑤 ≈ 𝑥 ↔ 𝑤 ≈ 𝑤 ) ) |
| 138 |
137
|
rspcev |
⊢ ( ( 𝑤 ∈ suc 𝑦 ∧ 𝑤 ≈ 𝑤 ) → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) |
| 139 |
135 136 138
|
syl2an |
⊢ ( ( 𝑤 = 𝑦 ∧ 𝑤 ∈ ω ) → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) |
| 140 |
139
|
2a1d |
⊢ ( ( 𝑤 = 𝑦 ∧ 𝑤 ∈ ω ) → ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) → ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) |
| 141 |
134 140
|
sylbir |
⊢ ( ( 𝑤 = 𝑦 ∧ 𝑦 ∈ ω ) → ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) → ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) |
| 142 |
141
|
ex |
⊢ ( 𝑤 = 𝑦 → ( 𝑦 ∈ ω → ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) → ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) ) |
| 143 |
142
|
adantrd |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) → ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) → ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) ) |
| 144 |
143
|
pm2.43d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) → ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) |
| 145 |
50 132 144
|
pm2.61ii |
⊢ ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) → ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) |
| 146 |
145
|
ex |
⊢ ( 𝑦 ∈ ω → ( ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) → ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) |
| 147 |
24 25 146
|
alrimd |
⊢ ( 𝑦 ∈ ω → ( ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) → ∀ 𝑤 ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) |
| 148 |
8 12 16 20 23 147
|
finds |
⊢ ( 𝐴 ∈ ω → ∀ 𝑤 ( 𝑤 ⊊ 𝐴 → ∃ 𝑥 ∈ 𝐴 𝑤 ≈ 𝑥 ) ) |
| 149 |
|
psseq1 |
⊢ ( 𝑤 = 𝐵 → ( 𝑤 ⊊ 𝐴 ↔ 𝐵 ⊊ 𝐴 ) ) |
| 150 |
|
breq1 |
⊢ ( 𝑤 = 𝐵 → ( 𝑤 ≈ 𝑥 ↔ 𝐵 ≈ 𝑥 ) ) |
| 151 |
150
|
rexbidv |
⊢ ( 𝑤 = 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝑤 ≈ 𝑥 ↔ ∃ 𝑥 ∈ 𝐴 𝐵 ≈ 𝑥 ) ) |
| 152 |
149 151
|
imbi12d |
⊢ ( 𝑤 = 𝐵 → ( ( 𝑤 ⊊ 𝐴 → ∃ 𝑥 ∈ 𝐴 𝑤 ≈ 𝑥 ) ↔ ( 𝐵 ⊊ 𝐴 → ∃ 𝑥 ∈ 𝐴 𝐵 ≈ 𝑥 ) ) ) |
| 153 |
152
|
spcgv |
⊢ ( 𝐵 ∈ V → ( ∀ 𝑤 ( 𝑤 ⊊ 𝐴 → ∃ 𝑥 ∈ 𝐴 𝑤 ≈ 𝑥 ) → ( 𝐵 ⊊ 𝐴 → ∃ 𝑥 ∈ 𝐴 𝐵 ≈ 𝑥 ) ) ) |
| 154 |
148 153
|
syl5 |
⊢ ( 𝐵 ∈ V → ( 𝐴 ∈ ω → ( 𝐵 ⊊ 𝐴 → ∃ 𝑥 ∈ 𝐴 𝐵 ≈ 𝑥 ) ) ) |
| 155 |
154
|
com3l |
⊢ ( 𝐴 ∈ ω → ( 𝐵 ⊊ 𝐴 → ( 𝐵 ∈ V → ∃ 𝑥 ∈ 𝐴 𝐵 ≈ 𝑥 ) ) ) |
| 156 |
155
|
imp |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴 ) → ( 𝐵 ∈ V → ∃ 𝑥 ∈ 𝐴 𝐵 ≈ 𝑥 ) ) |
| 157 |
4 156
|
mpd |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴 ) → ∃ 𝑥 ∈ 𝐴 𝐵 ≈ 𝑥 ) |