Description: Field of a subposet. (Contributed by FL, 19-Sep-2011) (Revised by Mario Carneiro, 9-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | psssdm.1 | ⊢ 𝑋 = dom 𝑅 | |
| Assertion | psssdm | ⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝐴 ⊆ 𝑋 ) → dom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) = 𝐴 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | psssdm.1 | ⊢ 𝑋 = dom 𝑅 | |
| 2 | 1 | psssdm2 | ⊢ ( 𝑅 ∈ PosetRel → dom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) = ( 𝑋 ∩ 𝐴 ) ) | 
| 3 | sseqin2 | ⊢ ( 𝐴 ⊆ 𝑋 ↔ ( 𝑋 ∩ 𝐴 ) = 𝐴 ) | |
| 4 | 3 | biimpi | ⊢ ( 𝐴 ⊆ 𝑋 → ( 𝑋 ∩ 𝐴 ) = 𝐴 ) | 
| 5 | 2 4 | sylan9eq | ⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝐴 ⊆ 𝑋 ) → dom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) = 𝐴 ) |