Step |
Hyp |
Ref |
Expression |
1 |
|
psssdm.1 |
⊢ 𝑋 = dom 𝑅 |
2 |
|
dmin |
⊢ dom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( dom 𝑅 ∩ dom ( 𝐴 × 𝐴 ) ) |
3 |
1
|
eqcomi |
⊢ dom 𝑅 = 𝑋 |
4 |
|
dmxpid |
⊢ dom ( 𝐴 × 𝐴 ) = 𝐴 |
5 |
3 4
|
ineq12i |
⊢ ( dom 𝑅 ∩ dom ( 𝐴 × 𝐴 ) ) = ( 𝑋 ∩ 𝐴 ) |
6 |
2 5
|
sseqtri |
⊢ dom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝑋 ∩ 𝐴 ) |
7 |
6
|
a1i |
⊢ ( 𝑅 ∈ PosetRel → dom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝑋 ∩ 𝐴 ) ) |
8 |
|
simpr |
⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝑥 ∈ ( 𝑋 ∩ 𝐴 ) ) → 𝑥 ∈ ( 𝑋 ∩ 𝐴 ) ) |
9 |
8
|
elin2d |
⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝑥 ∈ ( 𝑋 ∩ 𝐴 ) ) → 𝑥 ∈ 𝐴 ) |
10 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( 𝑋 ∩ 𝐴 ) → 𝑥 ∈ 𝑋 ) |
11 |
1
|
psref |
⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝑥 ∈ 𝑋 ) → 𝑥 𝑅 𝑥 ) |
12 |
10 11
|
sylan2 |
⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝑥 ∈ ( 𝑋 ∩ 𝐴 ) ) → 𝑥 𝑅 𝑥 ) |
13 |
|
brinxp2 |
⊢ ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 𝑅 𝑥 ) ) |
14 |
9 9 12 13
|
syl21anbrc |
⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝑥 ∈ ( 𝑋 ∩ 𝐴 ) ) → 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) |
15 |
|
vex |
⊢ 𝑥 ∈ V |
16 |
15 15
|
breldm |
⊢ ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 → 𝑥 ∈ dom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) |
17 |
14 16
|
syl |
⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝑥 ∈ ( 𝑋 ∩ 𝐴 ) ) → 𝑥 ∈ dom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) |
18 |
7 17
|
eqelssd |
⊢ ( 𝑅 ∈ PosetRel → dom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) = ( 𝑋 ∩ 𝐴 ) ) |