Description: A proper subclass is a subclass. Theorem 10 of Suppes p. 23. (Contributed by NM, 7-Feb-1996)
Ref | Expression | ||
---|---|---|---|
Assertion | pssss | ⊢ ( 𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pss | ⊢ ( 𝐴 ⊊ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ) | |
2 | 1 | simplbi | ⊢ ( 𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵 ) |