Description: A proper subclass is a subclass. Theorem 10 of Suppes p. 23. (Contributed by NM, 7-Feb-1996)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pssss | ⊢ ( 𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pss | ⊢ ( 𝐴 ⊊ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ) | |
| 2 | 1 | simplbi | ⊢ ( 𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵 ) |