Description: Deduce subclass from proper subclass. (Contributed by NM, 29-Feb-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pssssd.1 | ⊢ ( 𝜑 → 𝐴 ⊊ 𝐵 ) | |
| Assertion | pssssd | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pssssd.1 | ⊢ ( 𝜑 → 𝐴 ⊊ 𝐵 ) | |
| 2 | pssss | ⊢ ( 𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵 ) | |
| 3 | 1 2 | syl | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |