Metamath Proof Explorer


Theorem psssstr

Description: Transitive law for subclass and proper subclass. (Contributed by NM, 3-Apr-1996)

Ref Expression
Assertion psssstr ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 sspss ( 𝐵𝐶 ↔ ( 𝐵𝐶𝐵 = 𝐶 ) )
2 psstr ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )
3 2 ex ( 𝐴𝐵 → ( 𝐵𝐶𝐴𝐶 ) )
4 psseq2 ( 𝐵 = 𝐶 → ( 𝐴𝐵𝐴𝐶 ) )
5 4 biimpcd ( 𝐴𝐵 → ( 𝐵 = 𝐶𝐴𝐶 ) )
6 3 5 jaod ( 𝐴𝐵 → ( ( 𝐵𝐶𝐵 = 𝐶 ) → 𝐴𝐶 ) )
7 6 imp ( ( 𝐴𝐵 ∧ ( 𝐵𝐶𝐵 = 𝐶 ) ) → 𝐴𝐶 )
8 1 7 sylan2b ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )