Description: Transitive law for subclass and proper subclass. (Contributed by NM, 3-Apr-1996)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | psssstr | ⊢ ( ( 𝐴 ⊊ 𝐵 ∧ 𝐵 ⊆ 𝐶 ) → 𝐴 ⊊ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspss | ⊢ ( 𝐵 ⊆ 𝐶 ↔ ( 𝐵 ⊊ 𝐶 ∨ 𝐵 = 𝐶 ) ) | |
| 2 | psstr | ⊢ ( ( 𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶 ) → 𝐴 ⊊ 𝐶 ) | |
| 3 | 2 | ex | ⊢ ( 𝐴 ⊊ 𝐵 → ( 𝐵 ⊊ 𝐶 → 𝐴 ⊊ 𝐶 ) ) |
| 4 | psseq2 | ⊢ ( 𝐵 = 𝐶 → ( 𝐴 ⊊ 𝐵 ↔ 𝐴 ⊊ 𝐶 ) ) | |
| 5 | 4 | biimpcd | ⊢ ( 𝐴 ⊊ 𝐵 → ( 𝐵 = 𝐶 → 𝐴 ⊊ 𝐶 ) ) |
| 6 | 3 5 | jaod | ⊢ ( 𝐴 ⊊ 𝐵 → ( ( 𝐵 ⊊ 𝐶 ∨ 𝐵 = 𝐶 ) → 𝐴 ⊊ 𝐶 ) ) |
| 7 | 6 | imp | ⊢ ( ( 𝐴 ⊊ 𝐵 ∧ ( 𝐵 ⊊ 𝐶 ∨ 𝐵 = 𝐶 ) ) → 𝐴 ⊊ 𝐶 ) |
| 8 | 1 7 | sylan2b | ⊢ ( ( 𝐴 ⊊ 𝐵 ∧ 𝐵 ⊆ 𝐶 ) → 𝐴 ⊊ 𝐶 ) |