Metamath Proof Explorer


Theorem psstr

Description: Transitive law for proper subclass. Theorem 9 of Suppes p. 23. (Contributed by NM, 7-Feb-1996)

Ref Expression
Assertion psstr ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 pssss ( 𝐴𝐵𝐴𝐵 )
2 pssss ( 𝐵𝐶𝐵𝐶 )
3 1 2 sylan9ss ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )
4 pssn2lp ¬ ( 𝐶𝐵𝐵𝐶 )
5 psseq1 ( 𝐴 = 𝐶 → ( 𝐴𝐵𝐶𝐵 ) )
6 5 anbi1d ( 𝐴 = 𝐶 → ( ( 𝐴𝐵𝐵𝐶 ) ↔ ( 𝐶𝐵𝐵𝐶 ) ) )
7 4 6 mtbiri ( 𝐴 = 𝐶 → ¬ ( 𝐴𝐵𝐵𝐶 ) )
8 7 con2i ( ( 𝐴𝐵𝐵𝐶 ) → ¬ 𝐴 = 𝐶 )
9 dfpss2 ( 𝐴𝐶 ↔ ( 𝐴𝐶 ∧ ¬ 𝐴 = 𝐶 ) )
10 3 8 9 sylanbrc ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )