Description: Transitive law for proper subclass. Theorem 9 of Suppes p. 23. (Contributed by NM, 7-Feb-1996)
Ref | Expression | ||
---|---|---|---|
Assertion | psstr | ⊢ ( ( 𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶 ) → 𝐴 ⊊ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pssss | ⊢ ( 𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵 ) | |
2 | pssss | ⊢ ( 𝐵 ⊊ 𝐶 → 𝐵 ⊆ 𝐶 ) | |
3 | 1 2 | sylan9ss | ⊢ ( ( 𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶 ) → 𝐴 ⊆ 𝐶 ) |
4 | pssn2lp | ⊢ ¬ ( 𝐶 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶 ) | |
5 | psseq1 | ⊢ ( 𝐴 = 𝐶 → ( 𝐴 ⊊ 𝐵 ↔ 𝐶 ⊊ 𝐵 ) ) | |
6 | 5 | anbi1d | ⊢ ( 𝐴 = 𝐶 → ( ( 𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶 ) ↔ ( 𝐶 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶 ) ) ) |
7 | 4 6 | mtbiri | ⊢ ( 𝐴 = 𝐶 → ¬ ( 𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶 ) ) |
8 | 7 | con2i | ⊢ ( ( 𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶 ) → ¬ 𝐴 = 𝐶 ) |
9 | dfpss2 | ⊢ ( 𝐴 ⊊ 𝐶 ↔ ( 𝐴 ⊆ 𝐶 ∧ ¬ 𝐴 = 𝐶 ) ) | |
10 | 3 8 9 | sylanbrc | ⊢ ( ( 𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶 ) → 𝐴 ⊊ 𝐶 ) |