Metamath Proof Explorer


Theorem psstrd

Description: Proper subclass inclusion is transitive. Deduction form of psstr . (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses psstrd.1 ( 𝜑𝐴𝐵 )
psstrd.2 ( 𝜑𝐵𝐶 )
Assertion psstrd ( 𝜑𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 psstrd.1 ( 𝜑𝐴𝐵 )
2 psstrd.2 ( 𝜑𝐵𝐶 )
3 psstr ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )
4 1 2 3 syl2anc ( 𝜑𝐴𝐶 )