Metamath Proof Explorer
Description: Proper subclass inclusion is transitive. Deduction form of psstr .
(Contributed by David Moews, 1-May-2017)
|
|
Ref |
Expression |
|
Hypotheses |
psstrd.1 |
⊢ ( 𝜑 → 𝐴 ⊊ 𝐵 ) |
|
|
psstrd.2 |
⊢ ( 𝜑 → 𝐵 ⊊ 𝐶 ) |
|
Assertion |
psstrd |
⊢ ( 𝜑 → 𝐴 ⊊ 𝐶 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psstrd.1 |
⊢ ( 𝜑 → 𝐴 ⊊ 𝐵 ) |
| 2 |
|
psstrd.2 |
⊢ ( 𝜑 → 𝐵 ⊊ 𝐶 ) |
| 3 |
|
psstr |
⊢ ( ( 𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶 ) → 𝐴 ⊊ 𝐶 ) |
| 4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → 𝐴 ⊊ 𝐶 ) |