Description: Any non-universal class is a proper subclass of the universal class. (Contributed by NM, 17-May-1998)
Ref | Expression | ||
---|---|---|---|
Assertion | pssv | ⊢ ( 𝐴 ⊊ V ↔ ¬ 𝐴 = V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv | ⊢ 𝐴 ⊆ V | |
2 | dfpss2 | ⊢ ( 𝐴 ⊊ V ↔ ( 𝐴 ⊆ V ∧ ¬ 𝐴 = V ) ) | |
3 | 1 2 | mpbiran | ⊢ ( 𝐴 ⊊ V ↔ ¬ 𝐴 = V ) |