Description: Any non-universal class is a proper subclass of the universal class. (Contributed by NM, 17-May-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pssv | ⊢ ( 𝐴 ⊊ V ↔ ¬ 𝐴 = V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv | ⊢ 𝐴 ⊆ V | |
| 2 | dfpss2 | ⊢ ( 𝐴 ⊊ V ↔ ( 𝐴 ⊆ V ∧ ¬ 𝐴 = V ) ) | |
| 3 | 1 2 | mpbiran | ⊢ ( 𝐴 ⊊ V ↔ ¬ 𝐴 = V ) |