Description: A poset is transitive. (Contributed by NM, 12-May-2008) (Revised by Mario Carneiro, 30-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | pstr | ⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pslem | ⊢ ( 𝑅 ∈ PosetRel → ( ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) ∧ ( 𝐴 ∈ ∪ ∪ 𝑅 → 𝐴 𝑅 𝐴 ) ∧ ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐴 ) → 𝐴 = 𝐵 ) ) ) | |
2 | 1 | simp1d | ⊢ ( 𝑅 ∈ PosetRel → ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) ) |
3 | 2 | 3impib | ⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) |