Metamath Proof Explorer


Theorem pstr2

Description: A poset is transitive. (Contributed by FL, 3-Aug-2009)

Ref Expression
Assertion pstr2 ( 𝑅 ∈ PosetRel → ( 𝑅𝑅 ) ⊆ 𝑅 )

Proof

Step Hyp Ref Expression
1 isps ( 𝑅 ∈ PosetRel → ( 𝑅 ∈ PosetRel ↔ ( Rel 𝑅 ∧ ( 𝑅𝑅 ) ⊆ 𝑅 ∧ ( 𝑅 𝑅 ) = ( I ↾ 𝑅 ) ) ) )
2 1 ibi ( 𝑅 ∈ PosetRel → ( Rel 𝑅 ∧ ( 𝑅𝑅 ) ⊆ 𝑅 ∧ ( 𝑅 𝑅 ) = ( I ↾ 𝑅 ) ) )
3 2 simp2d ( 𝑅 ∈ PosetRel → ( 𝑅𝑅 ) ⊆ 𝑅 )