Step |
Hyp |
Ref |
Expression |
1 |
|
psubclin.c |
⊢ 𝐶 = ( PSubCl ‘ 𝐾 ) |
2 |
|
simp1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) → 𝐾 ∈ HL ) |
3 |
|
hlclat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ CLat ) |
4 |
3
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) → 𝐾 ∈ CLat ) |
5 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
6 |
5 1
|
psubclssatN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ) → 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ) |
7 |
6
|
3adant3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) → 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
9 |
8 5
|
atssbase |
⊢ ( Atoms ‘ 𝐾 ) ⊆ ( Base ‘ 𝐾 ) |
10 |
7 9
|
sstrdi |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) → 𝑋 ⊆ ( Base ‘ 𝐾 ) ) |
11 |
|
eqid |
⊢ ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 ) |
12 |
8 11
|
clatlubcl |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑋 ⊆ ( Base ‘ 𝐾 ) ) → ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) |
13 |
4 10 12
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) → ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) |
14 |
5 1
|
psubclssatN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ) → 𝑌 ⊆ ( Atoms ‘ 𝐾 ) ) |
15 |
14
|
3adant2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) → 𝑌 ⊆ ( Atoms ‘ 𝐾 ) ) |
16 |
15 9
|
sstrdi |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) → 𝑌 ⊆ ( Base ‘ 𝐾 ) ) |
17 |
8 11
|
clatlubcl |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑌 ⊆ ( Base ‘ 𝐾 ) ) → ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ) |
18 |
4 16 17
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) → ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ) |
19 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
20 |
|
eqid |
⊢ ( pmap ‘ 𝐾 ) = ( pmap ‘ 𝐾 ) |
21 |
8 19 5 20
|
pmapmeet |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( pmap ‘ 𝐾 ) ‘ ( ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) = ( ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ∩ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) |
22 |
2 13 18 21
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) → ( ( pmap ‘ 𝐾 ) ‘ ( ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) = ( ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ∩ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) |
23 |
11 20 1
|
pmapidclN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ) → ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) = 𝑋 ) |
24 |
23
|
3adant3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) → ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) = 𝑋 ) |
25 |
11 20 1
|
pmapidclN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ) → ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) = 𝑌 ) |
26 |
25
|
3adant2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) → ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) = 𝑌 ) |
27 |
24 26
|
ineq12d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) → ( ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ∩ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) = ( 𝑋 ∩ 𝑌 ) ) |
28 |
22 27
|
eqtrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) → ( ( pmap ‘ 𝐾 ) ‘ ( ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) = ( 𝑋 ∩ 𝑌 ) ) |
29 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
30 |
29
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) → 𝐾 ∈ Lat ) |
31 |
8 19
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ∈ ( Base ‘ 𝐾 ) ) |
32 |
30 13 18 31
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) → ( ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ∈ ( Base ‘ 𝐾 ) ) |
33 |
8 20 1
|
pmapsubclN |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( pmap ‘ 𝐾 ) ‘ ( ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ∈ 𝐶 ) |
34 |
2 32 33
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) → ( ( pmap ‘ 𝐾 ) ‘ ( ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ∈ 𝐶 ) |
35 |
28 34
|
eqeltrrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) → ( 𝑋 ∩ 𝑌 ) ∈ 𝐶 ) |