| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psubclset.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 2 |
|
psubclset.p |
⊢ ⊥ = ( ⊥𝑃 ‘ 𝐾 ) |
| 3 |
|
psubclset.c |
⊢ 𝐶 = ( PSubCl ‘ 𝐾 ) |
| 4 |
|
elex |
⊢ ( 𝐾 ∈ 𝐵 → 𝐾 ∈ V ) |
| 5 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = ( Atoms ‘ 𝐾 ) ) |
| 6 |
5 1
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = 𝐴 ) |
| 7 |
6
|
sseq2d |
⊢ ( 𝑘 = 𝐾 → ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ↔ 𝑠 ⊆ 𝐴 ) ) |
| 8 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( ⊥𝑃 ‘ 𝑘 ) = ( ⊥𝑃 ‘ 𝐾 ) ) |
| 9 |
8 2
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( ⊥𝑃 ‘ 𝑘 ) = ⊥ ) |
| 10 |
9
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( ⊥𝑃 ‘ 𝑘 ) ‘ 𝑠 ) = ( ⊥ ‘ 𝑠 ) ) |
| 11 |
9 10
|
fveq12d |
⊢ ( 𝑘 = 𝐾 → ( ( ⊥𝑃 ‘ 𝑘 ) ‘ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ 𝑠 ) ) = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) ) |
| 12 |
11
|
eqeq1d |
⊢ ( 𝑘 = 𝐾 → ( ( ( ⊥𝑃 ‘ 𝑘 ) ‘ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ 𝑠 ) ) = 𝑠 ↔ ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) = 𝑠 ) ) |
| 13 |
7 12
|
anbi12d |
⊢ ( 𝑘 = 𝐾 → ( ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ∧ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ 𝑠 ) ) = 𝑠 ) ↔ ( 𝑠 ⊆ 𝐴 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) = 𝑠 ) ) ) |
| 14 |
13
|
abbidv |
⊢ ( 𝑘 = 𝐾 → { 𝑠 ∣ ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ∧ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ 𝑠 ) ) = 𝑠 ) } = { 𝑠 ∣ ( 𝑠 ⊆ 𝐴 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) = 𝑠 ) } ) |
| 15 |
|
df-psubclN |
⊢ PSubCl = ( 𝑘 ∈ V ↦ { 𝑠 ∣ ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ∧ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ 𝑠 ) ) = 𝑠 ) } ) |
| 16 |
1
|
fvexi |
⊢ 𝐴 ∈ V |
| 17 |
16
|
pwex |
⊢ 𝒫 𝐴 ∈ V |
| 18 |
|
velpw |
⊢ ( 𝑠 ∈ 𝒫 𝐴 ↔ 𝑠 ⊆ 𝐴 ) |
| 19 |
18
|
anbi1i |
⊢ ( ( 𝑠 ∈ 𝒫 𝐴 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) = 𝑠 ) ↔ ( 𝑠 ⊆ 𝐴 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) = 𝑠 ) ) |
| 20 |
19
|
abbii |
⊢ { 𝑠 ∣ ( 𝑠 ∈ 𝒫 𝐴 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) = 𝑠 ) } = { 𝑠 ∣ ( 𝑠 ⊆ 𝐴 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) = 𝑠 ) } |
| 21 |
|
ssab2 |
⊢ { 𝑠 ∣ ( 𝑠 ∈ 𝒫 𝐴 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) = 𝑠 ) } ⊆ 𝒫 𝐴 |
| 22 |
20 21
|
eqsstrri |
⊢ { 𝑠 ∣ ( 𝑠 ⊆ 𝐴 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) = 𝑠 ) } ⊆ 𝒫 𝐴 |
| 23 |
17 22
|
ssexi |
⊢ { 𝑠 ∣ ( 𝑠 ⊆ 𝐴 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) = 𝑠 ) } ∈ V |
| 24 |
14 15 23
|
fvmpt |
⊢ ( 𝐾 ∈ V → ( PSubCl ‘ 𝐾 ) = { 𝑠 ∣ ( 𝑠 ⊆ 𝐴 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) = 𝑠 ) } ) |
| 25 |
3 24
|
eqtrid |
⊢ ( 𝐾 ∈ V → 𝐶 = { 𝑠 ∣ ( 𝑠 ⊆ 𝐴 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) = 𝑠 ) } ) |
| 26 |
4 25
|
syl |
⊢ ( 𝐾 ∈ 𝐵 → 𝐶 = { 𝑠 ∣ ( 𝑠 ⊆ 𝐴 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) = 𝑠 ) } ) |