Metamath Proof Explorer


Theorem psubclsetN

Description: The set of closed projective subspaces in a Hilbert lattice. (Contributed by NM, 23-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses psubclset.a 𝐴 = ( Atoms ‘ 𝐾 )
psubclset.p = ( ⊥𝑃𝐾 )
psubclset.c 𝐶 = ( PSubCl ‘ 𝐾 )
Assertion psubclsetN ( 𝐾𝐵𝐶 = { 𝑠 ∣ ( 𝑠𝐴 ∧ ( ‘ ( 𝑠 ) ) = 𝑠 ) } )

Proof

Step Hyp Ref Expression
1 psubclset.a 𝐴 = ( Atoms ‘ 𝐾 )
2 psubclset.p = ( ⊥𝑃𝐾 )
3 psubclset.c 𝐶 = ( PSubCl ‘ 𝐾 )
4 elex ( 𝐾𝐵𝐾 ∈ V )
5 fveq2 ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = ( Atoms ‘ 𝐾 ) )
6 5 1 eqtr4di ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = 𝐴 )
7 6 sseq2d ( 𝑘 = 𝐾 → ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ↔ 𝑠𝐴 ) )
8 fveq2 ( 𝑘 = 𝐾 → ( ⊥𝑃𝑘 ) = ( ⊥𝑃𝐾 ) )
9 8 2 eqtr4di ( 𝑘 = 𝐾 → ( ⊥𝑃𝑘 ) = )
10 9 fveq1d ( 𝑘 = 𝐾 → ( ( ⊥𝑃𝑘 ) ‘ 𝑠 ) = ( 𝑠 ) )
11 9 10 fveq12d ( 𝑘 = 𝐾 → ( ( ⊥𝑃𝑘 ) ‘ ( ( ⊥𝑃𝑘 ) ‘ 𝑠 ) ) = ( ‘ ( 𝑠 ) ) )
12 11 eqeq1d ( 𝑘 = 𝐾 → ( ( ( ⊥𝑃𝑘 ) ‘ ( ( ⊥𝑃𝑘 ) ‘ 𝑠 ) ) = 𝑠 ↔ ( ‘ ( 𝑠 ) ) = 𝑠 ) )
13 7 12 anbi12d ( 𝑘 = 𝐾 → ( ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ∧ ( ( ⊥𝑃𝑘 ) ‘ ( ( ⊥𝑃𝑘 ) ‘ 𝑠 ) ) = 𝑠 ) ↔ ( 𝑠𝐴 ∧ ( ‘ ( 𝑠 ) ) = 𝑠 ) ) )
14 13 abbidv ( 𝑘 = 𝐾 → { 𝑠 ∣ ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ∧ ( ( ⊥𝑃𝑘 ) ‘ ( ( ⊥𝑃𝑘 ) ‘ 𝑠 ) ) = 𝑠 ) } = { 𝑠 ∣ ( 𝑠𝐴 ∧ ( ‘ ( 𝑠 ) ) = 𝑠 ) } )
15 df-psubclN PSubCl = ( 𝑘 ∈ V ↦ { 𝑠 ∣ ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ∧ ( ( ⊥𝑃𝑘 ) ‘ ( ( ⊥𝑃𝑘 ) ‘ 𝑠 ) ) = 𝑠 ) } )
16 1 fvexi 𝐴 ∈ V
17 16 pwex 𝒫 𝐴 ∈ V
18 velpw ( 𝑠 ∈ 𝒫 𝐴𝑠𝐴 )
19 18 anbi1i ( ( 𝑠 ∈ 𝒫 𝐴 ∧ ( ‘ ( 𝑠 ) ) = 𝑠 ) ↔ ( 𝑠𝐴 ∧ ( ‘ ( 𝑠 ) ) = 𝑠 ) )
20 19 abbii { 𝑠 ∣ ( 𝑠 ∈ 𝒫 𝐴 ∧ ( ‘ ( 𝑠 ) ) = 𝑠 ) } = { 𝑠 ∣ ( 𝑠𝐴 ∧ ( ‘ ( 𝑠 ) ) = 𝑠 ) }
21 ssab2 { 𝑠 ∣ ( 𝑠 ∈ 𝒫 𝐴 ∧ ( ‘ ( 𝑠 ) ) = 𝑠 ) } ⊆ 𝒫 𝐴
22 20 21 eqsstrri { 𝑠 ∣ ( 𝑠𝐴 ∧ ( ‘ ( 𝑠 ) ) = 𝑠 ) } ⊆ 𝒫 𝐴
23 17 22 ssexi { 𝑠 ∣ ( 𝑠𝐴 ∧ ( ‘ ( 𝑠 ) ) = 𝑠 ) } ∈ V
24 14 15 23 fvmpt ( 𝐾 ∈ V → ( PSubCl ‘ 𝐾 ) = { 𝑠 ∣ ( 𝑠𝐴 ∧ ( ‘ ( 𝑠 ) ) = 𝑠 ) } )
25 3 24 eqtrid ( 𝐾 ∈ V → 𝐶 = { 𝑠 ∣ ( 𝑠𝐴 ∧ ( ‘ ( 𝑠 ) ) = 𝑠 ) } )
26 4 25 syl ( 𝐾𝐵𝐶 = { 𝑠 ∣ ( 𝑠𝐴 ∧ ( ‘ ( 𝑠 ) ) = 𝑠 ) } )