Step |
Hyp |
Ref |
Expression |
1 |
|
psubspset.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
psubspset.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
psubspset.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
psubspset.s |
⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) |
5 |
1 2 3 4
|
ispsubsp2 |
⊢ ( 𝐾 ∈ 𝐷 → ( 𝑋 ∈ 𝑆 ↔ ( 𝑋 ⊆ 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑋 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑝 ∈ 𝑋 ) ) ) ) |
6 |
5
|
simplbda |
⊢ ( ( 𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) → ∀ 𝑝 ∈ 𝐴 ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑋 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑝 ∈ 𝑋 ) ) |
7 |
6
|
ex |
⊢ ( 𝐾 ∈ 𝐷 → ( 𝑋 ∈ 𝑆 → ∀ 𝑝 ∈ 𝐴 ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑋 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑝 ∈ 𝑋 ) ) ) |
8 |
|
breq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) ↔ 𝑃 ≤ ( 𝑞 ∨ 𝑟 ) ) ) |
9 |
8
|
2rexbidv |
⊢ ( 𝑝 = 𝑃 → ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑋 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) ↔ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑋 𝑃 ≤ ( 𝑞 ∨ 𝑟 ) ) ) |
10 |
|
eleq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 ∈ 𝑋 ↔ 𝑃 ∈ 𝑋 ) ) |
11 |
9 10
|
imbi12d |
⊢ ( 𝑝 = 𝑃 → ( ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑋 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑝 ∈ 𝑋 ) ↔ ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑋 𝑃 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑃 ∈ 𝑋 ) ) ) |
12 |
11
|
rspccv |
⊢ ( ∀ 𝑝 ∈ 𝐴 ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑋 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑝 ∈ 𝑋 ) → ( 𝑃 ∈ 𝐴 → ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑋 𝑃 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑃 ∈ 𝑋 ) ) ) |
13 |
7 12
|
syl6 |
⊢ ( 𝐾 ∈ 𝐷 → ( 𝑋 ∈ 𝑆 → ( 𝑃 ∈ 𝐴 → ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑋 𝑃 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑃 ∈ 𝑋 ) ) ) ) |
14 |
13
|
3imp1 |
⊢ ( ( ( 𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ∧ 𝑃 ∈ 𝐴 ) ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑋 𝑃 ≤ ( 𝑞 ∨ 𝑟 ) ) → 𝑃 ∈ 𝑋 ) |