Metamath Proof Explorer


Theorem psubspi

Description: Property of a projective subspace. (Contributed by NM, 13-Jan-2012)

Ref Expression
Hypotheses psubspset.l = ( le ‘ 𝐾 )
psubspset.j = ( join ‘ 𝐾 )
psubspset.a 𝐴 = ( Atoms ‘ 𝐾 )
psubspset.s 𝑆 = ( PSubSp ‘ 𝐾 )
Assertion psubspi ( ( ( 𝐾𝐷𝑋𝑆𝑃𝐴 ) ∧ ∃ 𝑞𝑋𝑟𝑋 𝑃 ( 𝑞 𝑟 ) ) → 𝑃𝑋 )

Proof

Step Hyp Ref Expression
1 psubspset.l = ( le ‘ 𝐾 )
2 psubspset.j = ( join ‘ 𝐾 )
3 psubspset.a 𝐴 = ( Atoms ‘ 𝐾 )
4 psubspset.s 𝑆 = ( PSubSp ‘ 𝐾 )
5 1 2 3 4 ispsubsp2 ( 𝐾𝐷 → ( 𝑋𝑆 ↔ ( 𝑋𝐴 ∧ ∀ 𝑝𝐴 ( ∃ 𝑞𝑋𝑟𝑋 𝑝 ( 𝑞 𝑟 ) → 𝑝𝑋 ) ) ) )
6 5 simplbda ( ( 𝐾𝐷𝑋𝑆 ) → ∀ 𝑝𝐴 ( ∃ 𝑞𝑋𝑟𝑋 𝑝 ( 𝑞 𝑟 ) → 𝑝𝑋 ) )
7 6 ex ( 𝐾𝐷 → ( 𝑋𝑆 → ∀ 𝑝𝐴 ( ∃ 𝑞𝑋𝑟𝑋 𝑝 ( 𝑞 𝑟 ) → 𝑝𝑋 ) ) )
8 breq1 ( 𝑝 = 𝑃 → ( 𝑝 ( 𝑞 𝑟 ) ↔ 𝑃 ( 𝑞 𝑟 ) ) )
9 8 2rexbidv ( 𝑝 = 𝑃 → ( ∃ 𝑞𝑋𝑟𝑋 𝑝 ( 𝑞 𝑟 ) ↔ ∃ 𝑞𝑋𝑟𝑋 𝑃 ( 𝑞 𝑟 ) ) )
10 eleq1 ( 𝑝 = 𝑃 → ( 𝑝𝑋𝑃𝑋 ) )
11 9 10 imbi12d ( 𝑝 = 𝑃 → ( ( ∃ 𝑞𝑋𝑟𝑋 𝑝 ( 𝑞 𝑟 ) → 𝑝𝑋 ) ↔ ( ∃ 𝑞𝑋𝑟𝑋 𝑃 ( 𝑞 𝑟 ) → 𝑃𝑋 ) ) )
12 11 rspccv ( ∀ 𝑝𝐴 ( ∃ 𝑞𝑋𝑟𝑋 𝑝 ( 𝑞 𝑟 ) → 𝑝𝑋 ) → ( 𝑃𝐴 → ( ∃ 𝑞𝑋𝑟𝑋 𝑃 ( 𝑞 𝑟 ) → 𝑃𝑋 ) ) )
13 7 12 syl6 ( 𝐾𝐷 → ( 𝑋𝑆 → ( 𝑃𝐴 → ( ∃ 𝑞𝑋𝑟𝑋 𝑃 ( 𝑞 𝑟 ) → 𝑃𝑋 ) ) ) )
14 13 3imp1 ( ( ( 𝐾𝐷𝑋𝑆𝑃𝐴 ) ∧ ∃ 𝑞𝑋𝑟𝑋 𝑃 ( 𝑞 𝑟 ) ) → 𝑃𝑋 )