Step |
Hyp |
Ref |
Expression |
1 |
|
psubspset.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
psubspset.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
psubspset.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
psubspset.s |
⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) |
5 |
|
oveq1 |
⊢ ( 𝑞 = 𝑄 → ( 𝑞 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) |
6 |
5
|
breq2d |
⊢ ( 𝑞 = 𝑄 → ( 𝑃 ≤ ( 𝑞 ∨ 𝑟 ) ↔ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) |
7 |
|
oveq2 |
⊢ ( 𝑟 = 𝑅 → ( 𝑄 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑅 ) ) |
8 |
7
|
breq2d |
⊢ ( 𝑟 = 𝑅 → ( 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ↔ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ) |
9 |
6 8
|
rspc2ev |
⊢ ( ( 𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) → ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑋 𝑃 ≤ ( 𝑞 ∨ 𝑟 ) ) |
10 |
1 2 3 4
|
psubspi |
⊢ ( ( ( 𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ∧ 𝑃 ∈ 𝐴 ) ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑋 𝑃 ≤ ( 𝑞 ∨ 𝑟 ) ) → 𝑃 ∈ 𝑋 ) |
11 |
9 10
|
sylan2 |
⊢ ( ( ( 𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → 𝑃 ∈ 𝑋 ) |