Metamath Proof Explorer


Theorem psubspset

Description: The set of projective subspaces in a Hilbert lattice. (Contributed by NM, 2-Oct-2011)

Ref Expression
Hypotheses psubspset.l = ( le ‘ 𝐾 )
psubspset.j = ( join ‘ 𝐾 )
psubspset.a 𝐴 = ( Atoms ‘ 𝐾 )
psubspset.s 𝑆 = ( PSubSp ‘ 𝐾 )
Assertion psubspset ( 𝐾𝐵𝑆 = { 𝑠 ∣ ( 𝑠𝐴 ∧ ∀ 𝑝𝑠𝑞𝑠𝑟𝐴 ( 𝑟 ( 𝑝 𝑞 ) → 𝑟𝑠 ) ) } )

Proof

Step Hyp Ref Expression
1 psubspset.l = ( le ‘ 𝐾 )
2 psubspset.j = ( join ‘ 𝐾 )
3 psubspset.a 𝐴 = ( Atoms ‘ 𝐾 )
4 psubspset.s 𝑆 = ( PSubSp ‘ 𝐾 )
5 elex ( 𝐾𝐵𝐾 ∈ V )
6 fveq2 ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = ( Atoms ‘ 𝐾 ) )
7 6 3 eqtr4di ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = 𝐴 )
8 7 sseq2d ( 𝑘 = 𝐾 → ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ↔ 𝑠𝐴 ) )
9 fveq2 ( 𝑘 = 𝐾 → ( join ‘ 𝑘 ) = ( join ‘ 𝐾 ) )
10 9 2 eqtr4di ( 𝑘 = 𝐾 → ( join ‘ 𝑘 ) = )
11 10 oveqd ( 𝑘 = 𝐾 → ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) = ( 𝑝 𝑞 ) )
12 11 breq2d ( 𝑘 = 𝐾 → ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) ↔ 𝑟 ( le ‘ 𝑘 ) ( 𝑝 𝑞 ) ) )
13 fveq2 ( 𝑘 = 𝐾 → ( le ‘ 𝑘 ) = ( le ‘ 𝐾 ) )
14 13 1 eqtr4di ( 𝑘 = 𝐾 → ( le ‘ 𝑘 ) = )
15 14 breqd ( 𝑘 = 𝐾 → ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 𝑞 ) ↔ 𝑟 ( 𝑝 𝑞 ) ) )
16 12 15 bitrd ( 𝑘 = 𝐾 → ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) ↔ 𝑟 ( 𝑝 𝑞 ) ) )
17 16 imbi1d ( 𝑘 = 𝐾 → ( ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟𝑠 ) ↔ ( 𝑟 ( 𝑝 𝑞 ) → 𝑟𝑠 ) ) )
18 7 17 raleqbidv ( 𝑘 = 𝐾 → ( ∀ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟𝑠 ) ↔ ∀ 𝑟𝐴 ( 𝑟 ( 𝑝 𝑞 ) → 𝑟𝑠 ) ) )
19 18 2ralbidv ( 𝑘 = 𝐾 → ( ∀ 𝑝𝑠𝑞𝑠𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟𝑠 ) ↔ ∀ 𝑝𝑠𝑞𝑠𝑟𝐴 ( 𝑟 ( 𝑝 𝑞 ) → 𝑟𝑠 ) ) )
20 8 19 anbi12d ( 𝑘 = 𝐾 → ( ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ∧ ∀ 𝑝𝑠𝑞𝑠𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟𝑠 ) ) ↔ ( 𝑠𝐴 ∧ ∀ 𝑝𝑠𝑞𝑠𝑟𝐴 ( 𝑟 ( 𝑝 𝑞 ) → 𝑟𝑠 ) ) ) )
21 20 abbidv ( 𝑘 = 𝐾 → { 𝑠 ∣ ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ∧ ∀ 𝑝𝑠𝑞𝑠𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟𝑠 ) ) } = { 𝑠 ∣ ( 𝑠𝐴 ∧ ∀ 𝑝𝑠𝑞𝑠𝑟𝐴 ( 𝑟 ( 𝑝 𝑞 ) → 𝑟𝑠 ) ) } )
22 df-psubsp PSubSp = ( 𝑘 ∈ V ↦ { 𝑠 ∣ ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ∧ ∀ 𝑝𝑠𝑞𝑠𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟𝑠 ) ) } )
23 3 fvexi 𝐴 ∈ V
24 23 pwex 𝒫 𝐴 ∈ V
25 velpw ( 𝑠 ∈ 𝒫 𝐴𝑠𝐴 )
26 25 anbi1i ( ( 𝑠 ∈ 𝒫 𝐴 ∧ ∀ 𝑝𝑠𝑞𝑠𝑟𝐴 ( 𝑟 ( 𝑝 𝑞 ) → 𝑟𝑠 ) ) ↔ ( 𝑠𝐴 ∧ ∀ 𝑝𝑠𝑞𝑠𝑟𝐴 ( 𝑟 ( 𝑝 𝑞 ) → 𝑟𝑠 ) ) )
27 26 abbii { 𝑠 ∣ ( 𝑠 ∈ 𝒫 𝐴 ∧ ∀ 𝑝𝑠𝑞𝑠𝑟𝐴 ( 𝑟 ( 𝑝 𝑞 ) → 𝑟𝑠 ) ) } = { 𝑠 ∣ ( 𝑠𝐴 ∧ ∀ 𝑝𝑠𝑞𝑠𝑟𝐴 ( 𝑟 ( 𝑝 𝑞 ) → 𝑟𝑠 ) ) }
28 ssab2 { 𝑠 ∣ ( 𝑠 ∈ 𝒫 𝐴 ∧ ∀ 𝑝𝑠𝑞𝑠𝑟𝐴 ( 𝑟 ( 𝑝 𝑞 ) → 𝑟𝑠 ) ) } ⊆ 𝒫 𝐴
29 27 28 eqsstrri { 𝑠 ∣ ( 𝑠𝐴 ∧ ∀ 𝑝𝑠𝑞𝑠𝑟𝐴 ( 𝑟 ( 𝑝 𝑞 ) → 𝑟𝑠 ) ) } ⊆ 𝒫 𝐴
30 24 29 ssexi { 𝑠 ∣ ( 𝑠𝐴 ∧ ∀ 𝑝𝑠𝑞𝑠𝑟𝐴 ( 𝑟 ( 𝑝 𝑞 ) → 𝑟𝑠 ) ) } ∈ V
31 21 22 30 fvmpt ( 𝐾 ∈ V → ( PSubSp ‘ 𝐾 ) = { 𝑠 ∣ ( 𝑠𝐴 ∧ ∀ 𝑝𝑠𝑞𝑠𝑟𝐴 ( 𝑟 ( 𝑝 𝑞 ) → 𝑟𝑠 ) ) } )
32 4 31 eqtrid ( 𝐾 ∈ V → 𝑆 = { 𝑠 ∣ ( 𝑠𝐴 ∧ ∀ 𝑝𝑠𝑞𝑠𝑟𝐴 ( 𝑟 ( 𝑝 𝑞 ) → 𝑟𝑠 ) ) } )
33 5 32 syl ( 𝐾𝐵𝑆 = { 𝑠 ∣ ( 𝑠𝐴 ∧ ∀ 𝑝𝑠𝑞𝑠𝑟𝐴 ( 𝑟 ( 𝑝 𝑞 ) → 𝑟𝑠 ) ) } )