Step |
Hyp |
Ref |
Expression |
1 |
|
psubspset.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
psubspset.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
psubspset.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
psubspset.s |
⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) |
5 |
|
elex |
⊢ ( 𝐾 ∈ 𝐵 → 𝐾 ∈ V ) |
6 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = ( Atoms ‘ 𝐾 ) ) |
7 |
6 3
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = 𝐴 ) |
8 |
7
|
sseq2d |
⊢ ( 𝑘 = 𝐾 → ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ↔ 𝑠 ⊆ 𝐴 ) ) |
9 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( join ‘ 𝑘 ) = ( join ‘ 𝐾 ) ) |
10 |
9 2
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( join ‘ 𝑘 ) = ∨ ) |
11 |
10
|
oveqd |
⊢ ( 𝑘 = 𝐾 → ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) = ( 𝑝 ∨ 𝑞 ) ) |
12 |
11
|
breq2d |
⊢ ( 𝑘 = 𝐾 → ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) ↔ 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ∨ 𝑞 ) ) ) |
13 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( le ‘ 𝑘 ) = ( le ‘ 𝐾 ) ) |
14 |
13 1
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( le ‘ 𝑘 ) = ≤ ) |
15 |
14
|
breqd |
⊢ ( 𝑘 = 𝐾 → ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ∨ 𝑞 ) ↔ 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) ) ) |
16 |
12 15
|
bitrd |
⊢ ( 𝑘 = 𝐾 → ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) ↔ 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) ) ) |
17 |
16
|
imbi1d |
⊢ ( 𝑘 = 𝐾 → ( ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟 ∈ 𝑠 ) ↔ ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑠 ) ) ) |
18 |
7 17
|
raleqbidv |
⊢ ( 𝑘 = 𝐾 → ( ∀ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟 ∈ 𝑠 ) ↔ ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑠 ) ) ) |
19 |
18
|
2ralbidv |
⊢ ( 𝑘 = 𝐾 → ( ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟 ∈ 𝑠 ) ↔ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑠 ) ) ) |
20 |
8 19
|
anbi12d |
⊢ ( 𝑘 = 𝐾 → ( ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ∧ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟 ∈ 𝑠 ) ) ↔ ( 𝑠 ⊆ 𝐴 ∧ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑠 ) ) ) ) |
21 |
20
|
abbidv |
⊢ ( 𝑘 = 𝐾 → { 𝑠 ∣ ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ∧ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟 ∈ 𝑠 ) ) } = { 𝑠 ∣ ( 𝑠 ⊆ 𝐴 ∧ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑠 ) ) } ) |
22 |
|
df-psubsp |
⊢ PSubSp = ( 𝑘 ∈ V ↦ { 𝑠 ∣ ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ∧ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟 ∈ 𝑠 ) ) } ) |
23 |
3
|
fvexi |
⊢ 𝐴 ∈ V |
24 |
23
|
pwex |
⊢ 𝒫 𝐴 ∈ V |
25 |
|
velpw |
⊢ ( 𝑠 ∈ 𝒫 𝐴 ↔ 𝑠 ⊆ 𝐴 ) |
26 |
25
|
anbi1i |
⊢ ( ( 𝑠 ∈ 𝒫 𝐴 ∧ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑠 ) ) ↔ ( 𝑠 ⊆ 𝐴 ∧ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑠 ) ) ) |
27 |
26
|
abbii |
⊢ { 𝑠 ∣ ( 𝑠 ∈ 𝒫 𝐴 ∧ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑠 ) ) } = { 𝑠 ∣ ( 𝑠 ⊆ 𝐴 ∧ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑠 ) ) } |
28 |
|
ssab2 |
⊢ { 𝑠 ∣ ( 𝑠 ∈ 𝒫 𝐴 ∧ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑠 ) ) } ⊆ 𝒫 𝐴 |
29 |
27 28
|
eqsstrri |
⊢ { 𝑠 ∣ ( 𝑠 ⊆ 𝐴 ∧ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑠 ) ) } ⊆ 𝒫 𝐴 |
30 |
24 29
|
ssexi |
⊢ { 𝑠 ∣ ( 𝑠 ⊆ 𝐴 ∧ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑠 ) ) } ∈ V |
31 |
21 22 30
|
fvmpt |
⊢ ( 𝐾 ∈ V → ( PSubSp ‘ 𝐾 ) = { 𝑠 ∣ ( 𝑠 ⊆ 𝐴 ∧ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑠 ) ) } ) |
32 |
4 31
|
eqtrid |
⊢ ( 𝐾 ∈ V → 𝑆 = { 𝑠 ∣ ( 𝑠 ⊆ 𝐴 ∧ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑠 ) ) } ) |
33 |
5 32
|
syl |
⊢ ( 𝐾 ∈ 𝐵 → 𝑆 = { 𝑠 ∣ ( 𝑠 ⊆ 𝐴 ∧ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑠 ) ) } ) |