| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pt1hmeo.j | ⊢ 𝐾  =  ( ∏t ‘ { 〈 𝐴 ,  𝐽 〉 } ) | 
						
							| 2 |  | pt1hmeo.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 3 |  | pt1hmeo.r | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 4 |  | fconstmpt | ⊢ ( { 𝐴 }  ×  { 𝑥 } )  =  ( 𝑘  ∈  { 𝐴 }  ↦  𝑥 ) | 
						
							| 5 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐴  ∈  𝑉 ) | 
						
							| 6 |  | sneq | ⊢ ( 𝑘  =  𝐴  →  { 𝑘 }  =  { 𝐴 } ) | 
						
							| 7 | 6 | xpeq1d | ⊢ ( 𝑘  =  𝐴  →  ( { 𝑘 }  ×  { 𝑥 } )  =  ( { 𝐴 }  ×  { 𝑥 } ) ) | 
						
							| 8 |  | opeq1 | ⊢ ( 𝑘  =  𝐴  →  〈 𝑘 ,  𝑥 〉  =  〈 𝐴 ,  𝑥 〉 ) | 
						
							| 9 | 8 | sneqd | ⊢ ( 𝑘  =  𝐴  →  { 〈 𝑘 ,  𝑥 〉 }  =  { 〈 𝐴 ,  𝑥 〉 } ) | 
						
							| 10 | 7 9 | eqeq12d | ⊢ ( 𝑘  =  𝐴  →  ( ( { 𝑘 }  ×  { 𝑥 } )  =  { 〈 𝑘 ,  𝑥 〉 }  ↔  ( { 𝐴 }  ×  { 𝑥 } )  =  { 〈 𝐴 ,  𝑥 〉 } ) ) | 
						
							| 11 |  | vex | ⊢ 𝑘  ∈  V | 
						
							| 12 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 13 | 11 12 | xpsn | ⊢ ( { 𝑘 }  ×  { 𝑥 } )  =  { 〈 𝑘 ,  𝑥 〉 } | 
						
							| 14 | 10 13 | vtoclg | ⊢ ( 𝐴  ∈  𝑉  →  ( { 𝐴 }  ×  { 𝑥 } )  =  { 〈 𝐴 ,  𝑥 〉 } ) | 
						
							| 15 | 5 14 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( { 𝐴 }  ×  { 𝑥 } )  =  { 〈 𝐴 ,  𝑥 〉 } ) | 
						
							| 16 | 4 15 | eqtr3id | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝑘  ∈  { 𝐴 }  ↦  𝑥 )  =  { 〈 𝐴 ,  𝑥 〉 } ) | 
						
							| 17 | 16 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  { 𝐴 }  ↦  𝑥 ) )  =  ( 𝑥  ∈  𝑋  ↦  { 〈 𝐴 ,  𝑥 〉 } ) ) | 
						
							| 18 |  | snex | ⊢ { 𝐴 }  ∈  V | 
						
							| 19 | 18 | a1i | ⊢ ( 𝜑  →  { 𝐴 }  ∈  V ) | 
						
							| 20 |  | topontop | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝐽  ∈  Top ) | 
						
							| 21 | 3 20 | syl | ⊢ ( 𝜑  →  𝐽  ∈  Top ) | 
						
							| 22 | 2 21 | fsnd | ⊢ ( 𝜑  →  { 〈 𝐴 ,  𝐽 〉 } : { 𝐴 } ⟶ Top ) | 
						
							| 23 | 3 | cnmptid | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  𝑥 )  ∈  ( 𝐽  Cn  𝐽 ) ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝐴 } )  →  ( 𝑥  ∈  𝑋  ↦  𝑥 )  ∈  ( 𝐽  Cn  𝐽 ) ) | 
						
							| 25 |  | elsni | ⊢ ( 𝑘  ∈  { 𝐴 }  →  𝑘  =  𝐴 ) | 
						
							| 26 | 25 | fveq2d | ⊢ ( 𝑘  ∈  { 𝐴 }  →  ( { 〈 𝐴 ,  𝐽 〉 } ‘ 𝑘 )  =  ( { 〈 𝐴 ,  𝐽 〉 } ‘ 𝐴 ) ) | 
						
							| 27 |  | fvsng | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐽  ∈  ( TopOn ‘ 𝑋 ) )  →  ( { 〈 𝐴 ,  𝐽 〉 } ‘ 𝐴 )  =  𝐽 ) | 
						
							| 28 | 2 3 27 | syl2anc | ⊢ ( 𝜑  →  ( { 〈 𝐴 ,  𝐽 〉 } ‘ 𝐴 )  =  𝐽 ) | 
						
							| 29 | 26 28 | sylan9eqr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝐴 } )  →  ( { 〈 𝐴 ,  𝐽 〉 } ‘ 𝑘 )  =  𝐽 ) | 
						
							| 30 | 29 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝐴 } )  →  ( 𝐽  Cn  ( { 〈 𝐴 ,  𝐽 〉 } ‘ 𝑘 ) )  =  ( 𝐽  Cn  𝐽 ) ) | 
						
							| 31 | 24 30 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝐴 } )  →  ( 𝑥  ∈  𝑋  ↦  𝑥 )  ∈  ( 𝐽  Cn  ( { 〈 𝐴 ,  𝐽 〉 } ‘ 𝑘 ) ) ) | 
						
							| 32 | 1 3 19 22 31 | ptcn | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  { 𝐴 }  ↦  𝑥 ) )  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 33 | 17 32 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  { 〈 𝐴 ,  𝑥 〉 } )  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 34 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  =  { 〈 𝐴 ,  𝑥 〉 } ) )  →  𝑦  =  { 〈 𝐴 ,  𝑥 〉 } ) | 
						
							| 35 | 16 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  =  { 〈 𝐴 ,  𝑥 〉 } ) )  →  ( 𝑘  ∈  { 𝐴 }  ↦  𝑥 )  =  { 〈 𝐴 ,  𝑥 〉 } ) | 
						
							| 36 | 34 35 | eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  =  { 〈 𝐴 ,  𝑥 〉 } ) )  →  𝑦  =  ( 𝑘  ∈  { 𝐴 }  ↦  𝑥 ) ) | 
						
							| 37 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  =  { 〈 𝐴 ,  𝑥 〉 } ) )  →  𝑥  ∈  𝑋 ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  =  { 〈 𝐴 ,  𝑥 〉 } ) )  ∧  𝑘  ∈  { 𝐴 } )  →  𝑥  ∈  𝑋 ) | 
						
							| 39 | 38 | fmpttd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  =  { 〈 𝐴 ,  𝑥 〉 } ) )  →  ( 𝑘  ∈  { 𝐴 }  ↦  𝑥 ) : { 𝐴 } ⟶ 𝑋 ) | 
						
							| 40 |  | toponmax | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝑋  ∈  𝐽 ) | 
						
							| 41 | 3 40 | syl | ⊢ ( 𝜑  →  𝑋  ∈  𝐽 ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  =  { 〈 𝐴 ,  𝑥 〉 } ) )  →  𝑋  ∈  𝐽 ) | 
						
							| 43 |  | elmapg | ⊢ ( ( 𝑋  ∈  𝐽  ∧  { 𝐴 }  ∈  V )  →  ( ( 𝑘  ∈  { 𝐴 }  ↦  𝑥 )  ∈  ( 𝑋  ↑m  { 𝐴 } )  ↔  ( 𝑘  ∈  { 𝐴 }  ↦  𝑥 ) : { 𝐴 } ⟶ 𝑋 ) ) | 
						
							| 44 | 42 18 43 | sylancl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  =  { 〈 𝐴 ,  𝑥 〉 } ) )  →  ( ( 𝑘  ∈  { 𝐴 }  ↦  𝑥 )  ∈  ( 𝑋  ↑m  { 𝐴 } )  ↔  ( 𝑘  ∈  { 𝐴 }  ↦  𝑥 ) : { 𝐴 } ⟶ 𝑋 ) ) | 
						
							| 45 | 39 44 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  =  { 〈 𝐴 ,  𝑥 〉 } ) )  →  ( 𝑘  ∈  { 𝐴 }  ↦  𝑥 )  ∈  ( 𝑋  ↑m  { 𝐴 } ) ) | 
						
							| 46 | 36 45 | eqeltrd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  =  { 〈 𝐴 ,  𝑥 〉 } ) )  →  𝑦  ∈  ( 𝑋  ↑m  { 𝐴 } ) ) | 
						
							| 47 | 34 | fveq1d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  =  { 〈 𝐴 ,  𝑥 〉 } ) )  →  ( 𝑦 ‘ 𝐴 )  =  ( { 〈 𝐴 ,  𝑥 〉 } ‘ 𝐴 ) ) | 
						
							| 48 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  =  { 〈 𝐴 ,  𝑥 〉 } ) )  →  𝐴  ∈  𝑉 ) | 
						
							| 49 |  | fvsng | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑥  ∈  𝑋 )  →  ( { 〈 𝐴 ,  𝑥 〉 } ‘ 𝐴 )  =  𝑥 ) | 
						
							| 50 | 48 37 49 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  =  { 〈 𝐴 ,  𝑥 〉 } ) )  →  ( { 〈 𝐴 ,  𝑥 〉 } ‘ 𝐴 )  =  𝑥 ) | 
						
							| 51 | 47 50 | eqtr2d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  =  { 〈 𝐴 ,  𝑥 〉 } ) )  →  𝑥  =  ( 𝑦 ‘ 𝐴 ) ) | 
						
							| 52 | 46 51 | jca | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  =  { 〈 𝐴 ,  𝑥 〉 } ) )  →  ( 𝑦  ∈  ( 𝑋  ↑m  { 𝐴 } )  ∧  𝑥  =  ( 𝑦 ‘ 𝐴 ) ) ) | 
						
							| 53 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋  ↑m  { 𝐴 } )  ∧  𝑥  =  ( 𝑦 ‘ 𝐴 ) ) )  →  𝑥  =  ( 𝑦 ‘ 𝐴 ) ) | 
						
							| 54 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋  ↑m  { 𝐴 } )  ∧  𝑥  =  ( 𝑦 ‘ 𝐴 ) ) )  →  𝑦  ∈  ( 𝑋  ↑m  { 𝐴 } ) ) | 
						
							| 55 | 41 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋  ↑m  { 𝐴 } )  ∧  𝑥  =  ( 𝑦 ‘ 𝐴 ) ) )  →  𝑋  ∈  𝐽 ) | 
						
							| 56 |  | elmapg | ⊢ ( ( 𝑋  ∈  𝐽  ∧  { 𝐴 }  ∈  V )  →  ( 𝑦  ∈  ( 𝑋  ↑m  { 𝐴 } )  ↔  𝑦 : { 𝐴 } ⟶ 𝑋 ) ) | 
						
							| 57 | 55 18 56 | sylancl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋  ↑m  { 𝐴 } )  ∧  𝑥  =  ( 𝑦 ‘ 𝐴 ) ) )  →  ( 𝑦  ∈  ( 𝑋  ↑m  { 𝐴 } )  ↔  𝑦 : { 𝐴 } ⟶ 𝑋 ) ) | 
						
							| 58 | 54 57 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋  ↑m  { 𝐴 } )  ∧  𝑥  =  ( 𝑦 ‘ 𝐴 ) ) )  →  𝑦 : { 𝐴 } ⟶ 𝑋 ) | 
						
							| 59 |  | snidg | ⊢ ( 𝐴  ∈  𝑉  →  𝐴  ∈  { 𝐴 } ) | 
						
							| 60 | 2 59 | syl | ⊢ ( 𝜑  →  𝐴  ∈  { 𝐴 } ) | 
						
							| 61 | 60 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋  ↑m  { 𝐴 } )  ∧  𝑥  =  ( 𝑦 ‘ 𝐴 ) ) )  →  𝐴  ∈  { 𝐴 } ) | 
						
							| 62 | 58 61 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋  ↑m  { 𝐴 } )  ∧  𝑥  =  ( 𝑦 ‘ 𝐴 ) ) )  →  ( 𝑦 ‘ 𝐴 )  ∈  𝑋 ) | 
						
							| 63 | 53 62 | eqeltrd | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋  ↑m  { 𝐴 } )  ∧  𝑥  =  ( 𝑦 ‘ 𝐴 ) ) )  →  𝑥  ∈  𝑋 ) | 
						
							| 64 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋  ↑m  { 𝐴 } )  ∧  𝑥  =  ( 𝑦 ‘ 𝐴 ) ) )  →  𝐴  ∈  𝑉 ) | 
						
							| 65 |  | fsn2g | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝑦 : { 𝐴 } ⟶ 𝑋  ↔  ( ( 𝑦 ‘ 𝐴 )  ∈  𝑋  ∧  𝑦  =  { 〈 𝐴 ,  ( 𝑦 ‘ 𝐴 ) 〉 } ) ) ) | 
						
							| 66 | 64 65 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋  ↑m  { 𝐴 } )  ∧  𝑥  =  ( 𝑦 ‘ 𝐴 ) ) )  →  ( 𝑦 : { 𝐴 } ⟶ 𝑋  ↔  ( ( 𝑦 ‘ 𝐴 )  ∈  𝑋  ∧  𝑦  =  { 〈 𝐴 ,  ( 𝑦 ‘ 𝐴 ) 〉 } ) ) ) | 
						
							| 67 | 58 66 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋  ↑m  { 𝐴 } )  ∧  𝑥  =  ( 𝑦 ‘ 𝐴 ) ) )  →  ( ( 𝑦 ‘ 𝐴 )  ∈  𝑋  ∧  𝑦  =  { 〈 𝐴 ,  ( 𝑦 ‘ 𝐴 ) 〉 } ) ) | 
						
							| 68 | 67 | simprd | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋  ↑m  { 𝐴 } )  ∧  𝑥  =  ( 𝑦 ‘ 𝐴 ) ) )  →  𝑦  =  { 〈 𝐴 ,  ( 𝑦 ‘ 𝐴 ) 〉 } ) | 
						
							| 69 | 53 | opeq2d | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋  ↑m  { 𝐴 } )  ∧  𝑥  =  ( 𝑦 ‘ 𝐴 ) ) )  →  〈 𝐴 ,  𝑥 〉  =  〈 𝐴 ,  ( 𝑦 ‘ 𝐴 ) 〉 ) | 
						
							| 70 | 69 | sneqd | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋  ↑m  { 𝐴 } )  ∧  𝑥  =  ( 𝑦 ‘ 𝐴 ) ) )  →  { 〈 𝐴 ,  𝑥 〉 }  =  { 〈 𝐴 ,  ( 𝑦 ‘ 𝐴 ) 〉 } ) | 
						
							| 71 | 68 70 | eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋  ↑m  { 𝐴 } )  ∧  𝑥  =  ( 𝑦 ‘ 𝐴 ) ) )  →  𝑦  =  { 〈 𝐴 ,  𝑥 〉 } ) | 
						
							| 72 | 63 71 | jca | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋  ↑m  { 𝐴 } )  ∧  𝑥  =  ( 𝑦 ‘ 𝐴 ) ) )  →  ( 𝑥  ∈  𝑋  ∧  𝑦  =  { 〈 𝐴 ,  𝑥 〉 } ) ) | 
						
							| 73 | 52 72 | impbida | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝑋  ∧  𝑦  =  { 〈 𝐴 ,  𝑥 〉 } )  ↔  ( 𝑦  ∈  ( 𝑋  ↑m  { 𝐴 } )  ∧  𝑥  =  ( 𝑦 ‘ 𝐴 ) ) ) ) | 
						
							| 74 | 73 | mptcnv | ⊢ ( 𝜑  →  ◡ ( 𝑥  ∈  𝑋  ↦  { 〈 𝐴 ,  𝑥 〉 } )  =  ( 𝑦  ∈  ( 𝑋  ↑m  { 𝐴 } )  ↦  ( 𝑦 ‘ 𝐴 ) ) ) | 
						
							| 75 |  | xpsng | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐽  ∈  ( TopOn ‘ 𝑋 ) )  →  ( { 𝐴 }  ×  { 𝐽 } )  =  { 〈 𝐴 ,  𝐽 〉 } ) | 
						
							| 76 | 2 3 75 | syl2anc | ⊢ ( 𝜑  →  ( { 𝐴 }  ×  { 𝐽 } )  =  { 〈 𝐴 ,  𝐽 〉 } ) | 
						
							| 77 | 76 | eqcomd | ⊢ ( 𝜑  →  { 〈 𝐴 ,  𝐽 〉 }  =  ( { 𝐴 }  ×  { 𝐽 } ) ) | 
						
							| 78 | 77 | fveq2d | ⊢ ( 𝜑  →  ( ∏t ‘ { 〈 𝐴 ,  𝐽 〉 } )  =  ( ∏t ‘ ( { 𝐴 }  ×  { 𝐽 } ) ) ) | 
						
							| 79 | 1 78 | eqtrid | ⊢ ( 𝜑  →  𝐾  =  ( ∏t ‘ ( { 𝐴 }  ×  { 𝐽 } ) ) ) | 
						
							| 80 |  | eqid | ⊢ ( ∏t ‘ ( { 𝐴 }  ×  { 𝐽 } ) )  =  ( ∏t ‘ ( { 𝐴 }  ×  { 𝐽 } ) ) | 
						
							| 81 | 80 | pttoponconst | ⊢ ( ( { 𝐴 }  ∈  V  ∧  𝐽  ∈  ( TopOn ‘ 𝑋 ) )  →  ( ∏t ‘ ( { 𝐴 }  ×  { 𝐽 } ) )  ∈  ( TopOn ‘ ( 𝑋  ↑m  { 𝐴 } ) ) ) | 
						
							| 82 | 19 3 81 | syl2anc | ⊢ ( 𝜑  →  ( ∏t ‘ ( { 𝐴 }  ×  { 𝐽 } ) )  ∈  ( TopOn ‘ ( 𝑋  ↑m  { 𝐴 } ) ) ) | 
						
							| 83 | 79 82 | eqeltrd | ⊢ ( 𝜑  →  𝐾  ∈  ( TopOn ‘ ( 𝑋  ↑m  { 𝐴 } ) ) ) | 
						
							| 84 |  | toponuni | ⊢ ( 𝐾  ∈  ( TopOn ‘ ( 𝑋  ↑m  { 𝐴 } ) )  →  ( 𝑋  ↑m  { 𝐴 } )  =  ∪  𝐾 ) | 
						
							| 85 | 83 84 | syl | ⊢ ( 𝜑  →  ( 𝑋  ↑m  { 𝐴 } )  =  ∪  𝐾 ) | 
						
							| 86 | 85 | mpteq1d | ⊢ ( 𝜑  →  ( 𝑦  ∈  ( 𝑋  ↑m  { 𝐴 } )  ↦  ( 𝑦 ‘ 𝐴 ) )  =  ( 𝑦  ∈  ∪  𝐾  ↦  ( 𝑦 ‘ 𝐴 ) ) ) | 
						
							| 87 | 74 86 | eqtrd | ⊢ ( 𝜑  →  ◡ ( 𝑥  ∈  𝑋  ↦  { 〈 𝐴 ,  𝑥 〉 } )  =  ( 𝑦  ∈  ∪  𝐾  ↦  ( 𝑦 ‘ 𝐴 ) ) ) | 
						
							| 88 |  | eqid | ⊢ ∪  𝐾  =  ∪  𝐾 | 
						
							| 89 | 88 1 | ptpjcn | ⊢ ( ( { 𝐴 }  ∈  V  ∧  { 〈 𝐴 ,  𝐽 〉 } : { 𝐴 } ⟶ Top  ∧  𝐴  ∈  { 𝐴 } )  →  ( 𝑦  ∈  ∪  𝐾  ↦  ( 𝑦 ‘ 𝐴 ) )  ∈  ( 𝐾  Cn  ( { 〈 𝐴 ,  𝐽 〉 } ‘ 𝐴 ) ) ) | 
						
							| 90 | 18 22 60 89 | mp3an2i | ⊢ ( 𝜑  →  ( 𝑦  ∈  ∪  𝐾  ↦  ( 𝑦 ‘ 𝐴 ) )  ∈  ( 𝐾  Cn  ( { 〈 𝐴 ,  𝐽 〉 } ‘ 𝐴 ) ) ) | 
						
							| 91 | 28 | oveq2d | ⊢ ( 𝜑  →  ( 𝐾  Cn  ( { 〈 𝐴 ,  𝐽 〉 } ‘ 𝐴 ) )  =  ( 𝐾  Cn  𝐽 ) ) | 
						
							| 92 | 90 91 | eleqtrd | ⊢ ( 𝜑  →  ( 𝑦  ∈  ∪  𝐾  ↦  ( 𝑦 ‘ 𝐴 ) )  ∈  ( 𝐾  Cn  𝐽 ) ) | 
						
							| 93 | 87 92 | eqeltrd | ⊢ ( 𝜑  →  ◡ ( 𝑥  ∈  𝑋  ↦  { 〈 𝐴 ,  𝑥 〉 } )  ∈  ( 𝐾  Cn  𝐽 ) ) | 
						
							| 94 |  | ishmeo | ⊢ ( ( 𝑥  ∈  𝑋  ↦  { 〈 𝐴 ,  𝑥 〉 } )  ∈  ( 𝐽 Homeo 𝐾 )  ↔  ( ( 𝑥  ∈  𝑋  ↦  { 〈 𝐴 ,  𝑥 〉 } )  ∈  ( 𝐽  Cn  𝐾 )  ∧  ◡ ( 𝑥  ∈  𝑋  ↦  { 〈 𝐴 ,  𝑥 〉 } )  ∈  ( 𝐾  Cn  𝐽 ) ) ) | 
						
							| 95 | 33 93 94 | sylanbrc | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  { 〈 𝐴 ,  𝑥 〉 } )  ∈  ( 𝐽 Homeo 𝐾 ) ) |