Metamath Proof Explorer


Theorem ptbas

Description: The basis for a product topology is a basis. (Contributed by Mario Carneiro, 3-Feb-2015)

Ref Expression
Hypothesis ptbas.1 𝐵 = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑥 = X 𝑦𝐴 ( 𝑔𝑦 ) ) }
Assertion ptbas ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → 𝐵 ∈ TopBases )

Proof

Step Hyp Ref Expression
1 ptbas.1 𝐵 = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑥 = X 𝑦𝐴 ( 𝑔𝑦 ) ) }
2 1 ptbasin2 ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → ( fi ‘ 𝐵 ) = 𝐵 )
3 fibas ( fi ‘ 𝐵 ) ∈ TopBases
4 2 3 eqeltrrdi ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → 𝐵 ∈ TopBases )