| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ptbas.1 | ⊢ 𝐵  =  { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } | 
						
							| 2 |  | ptbasfi.2 | ⊢ 𝑋  =  X 𝑛  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑛 ) | 
						
							| 3 | 1 | elpt | ⊢ ( 𝑠  ∈  𝐵  ↔  ∃ ℎ ( ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑚  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑠  =  X 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 ) ) ) | 
						
							| 4 |  | df-3an | ⊢ ( ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑚  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ↔  ( ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) )  ∧  ∃ 𝑚  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 5 |  | simprr | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  →  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 6 |  | disjdif2 | ⊢ ( ( 𝐴  ∩  𝑚 )  =  ∅  →  ( 𝐴  ∖  𝑚 )  =  𝐴 ) | 
						
							| 7 | 6 | raleqdv | ⊢ ( ( 𝐴  ∩  𝑚 )  =  ∅  →  ( ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 )  ↔  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 8 | 7 | biimpac | ⊢ ( ( ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 )  ∧  ( 𝐴  ∩  𝑚 )  =  ∅ )  →  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 9 |  | ixpeq2 | ⊢ ( ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 )  →  X 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  =  X 𝑦  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 10 | 8 9 | syl | ⊢ ( ( ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 )  ∧  ( 𝐴  ∩  𝑚 )  =  ∅ )  →  X 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  =  X 𝑦  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 11 |  | fveq2 | ⊢ ( 𝑛  =  𝑦  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 12 | 11 | unieqd | ⊢ ( 𝑛  =  𝑦  →  ∪  ( 𝐹 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 13 | 12 | cbvixpv | ⊢ X 𝑛  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑛 )  =  X 𝑦  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑦 ) | 
						
							| 14 | 2 13 | eqtri | ⊢ 𝑋  =  X 𝑦  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑦 ) | 
						
							| 15 | 10 14 | eqtr4di | ⊢ ( ( ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 )  ∧  ( 𝐴  ∩  𝑚 )  =  ∅ )  →  X 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  =  𝑋 ) | 
						
							| 16 | 5 15 | sylan | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝐴  ∩  𝑚 )  =  ∅ )  →  X 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  =  𝑋 ) | 
						
							| 17 |  | ssv | ⊢ 𝑋  ⊆  V | 
						
							| 18 |  | iineq1 | ⊢ ( ( 𝐴  ∩  𝑚 )  =  ∅  →  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) )  =  ∩  𝑛  ∈  ∅ ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) ) | 
						
							| 19 |  | 0iin | ⊢ ∩  𝑛  ∈  ∅ ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) )  =  V | 
						
							| 20 | 18 19 | eqtrdi | ⊢ ( ( 𝐴  ∩  𝑚 )  =  ∅  →  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) )  =  V ) | 
						
							| 21 | 17 20 | sseqtrrid | ⊢ ( ( 𝐴  ∩  𝑚 )  =  ∅  →  𝑋  ⊆  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝐴  ∩  𝑚 )  =  ∅ )  →  𝑋  ⊆  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) ) | 
						
							| 23 |  | dfss2 | ⊢ ( 𝑋  ⊆  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) )  ↔  ( 𝑋  ∩  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) )  =  𝑋 ) | 
						
							| 24 | 22 23 | sylib | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝐴  ∩  𝑚 )  =  ∅ )  →  ( 𝑋  ∩  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) )  =  𝑋 ) | 
						
							| 25 | 16 24 | eqtr4d | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝐴  ∩  𝑚 )  =  ∅ )  →  X 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  =  ( 𝑋  ∩  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) ) ) | 
						
							| 26 |  | simplll | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  𝑛  ∈  ( 𝐴  ∩  𝑚 ) )  →  ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top ) ) | 
						
							| 27 |  | inss1 | ⊢ ( 𝐴  ∩  𝑚 )  ⊆  𝐴 | 
						
							| 28 |  | simpr | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  𝑛  ∈  ( 𝐴  ∩  𝑚 ) )  →  𝑛  ∈  ( 𝐴  ∩  𝑚 ) ) | 
						
							| 29 | 27 28 | sselid | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  𝑛  ∈  ( 𝐴  ∩  𝑚 ) )  →  𝑛  ∈  𝐴 ) | 
						
							| 30 |  | fveq2 | ⊢ ( 𝑦  =  𝑛  →  ( ℎ ‘ 𝑦 )  =  ( ℎ ‘ 𝑛 ) ) | 
						
							| 31 |  | fveq2 | ⊢ ( 𝑦  =  𝑛  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 32 | 30 31 | eleq12d | ⊢ ( 𝑦  =  𝑛  →  ( ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ↔  ( ℎ ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 33 |  | simprr | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  →  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 34 | 33 | ad2antrr | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  𝑛  ∈  ( 𝐴  ∩  𝑚 ) )  →  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 35 | 32 34 29 | rspcdva | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  𝑛  ∈  ( 𝐴  ∩  𝑚 ) )  →  ( ℎ ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 36 | 14 | ptpjpre1 | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( 𝑛  ∈  𝐴  ∧  ( ℎ ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 ) ) )  →  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) )  =  X 𝑦  ∈  𝐴 if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 37 | 26 29 35 36 | syl12anc | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  𝑛  ∈  ( 𝐴  ∩  𝑚 ) )  →  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) )  =  X 𝑦  ∈  𝐴 if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 38 | 37 | adantlr | ⊢ ( ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝐴  ∩  𝑚 )  ≠  ∅ )  ∧  𝑛  ∈  ( 𝐴  ∩  𝑚 ) )  →  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) )  =  X 𝑦  ∈  𝐴 if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 39 | 38 | iineq2dv | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝐴  ∩  𝑚 )  ≠  ∅ )  →  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) )  =  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) X 𝑦  ∈  𝐴 if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 40 |  | simpr | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝐴  ∩  𝑚 )  ≠  ∅ )  →  ( 𝐴  ∩  𝑚 )  ≠  ∅ ) | 
						
							| 41 |  | cnvimass | ⊢ ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) )  ⊆  dom  ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) ) | 
						
							| 42 |  | eqid | ⊢ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  =  ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) ) | 
						
							| 43 | 42 | dmmptss | ⊢ dom  ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  ⊆  𝑋 | 
						
							| 44 | 41 43 | sstri | ⊢ ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) )  ⊆  𝑋 | 
						
							| 45 | 44 14 | sseqtri | ⊢ ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) )  ⊆  X 𝑦  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑦 ) | 
						
							| 46 | 45 | rgenw | ⊢ ∀ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) )  ⊆  X 𝑦  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑦 ) | 
						
							| 47 |  | r19.2z | ⊢ ( ( ( 𝐴  ∩  𝑚 )  ≠  ∅  ∧  ∀ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) )  ⊆  X 𝑦  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑦 ) )  →  ∃ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) )  ⊆  X 𝑦  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 48 | 40 46 47 | sylancl | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝐴  ∩  𝑚 )  ≠  ∅ )  →  ∃ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) )  ⊆  X 𝑦  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 49 |  | iinss | ⊢ ( ∃ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) )  ⊆  X 𝑦  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑦 )  →  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) )  ⊆  X 𝑦  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 50 | 48 49 | syl | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝐴  ∩  𝑚 )  ≠  ∅ )  →  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) )  ⊆  X 𝑦  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 51 | 50 14 | sseqtrrdi | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝐴  ∩  𝑚 )  ≠  ∅ )  →  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) )  ⊆  𝑋 ) | 
						
							| 52 |  | sseqin2 | ⊢ ( ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) )  ⊆  𝑋  ↔  ( 𝑋  ∩  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) )  =  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) ) | 
						
							| 53 | 51 52 | sylib | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝐴  ∩  𝑚 )  ≠  ∅ )  →  ( 𝑋  ∩  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) )  =  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) ) | 
						
							| 54 | 33 | ad2antrr | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝐴  ∩  𝑚 )  ≠  ∅ )  →  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 55 |  | ssralv | ⊢ ( ( 𝐴  ∩  𝑚 )  ⊆  𝐴  →  ( ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  →  ∀ 𝑦  ∈  ( 𝐴  ∩  𝑚 ) ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 56 | 27 55 | ax-mp | ⊢ ( ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  →  ∀ 𝑦  ∈  ( 𝐴  ∩  𝑚 ) ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 57 |  | elssuni | ⊢ ( ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  →  ( ℎ ‘ 𝑦 )  ⊆  ∪  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 58 |  | iffalse | ⊢ ( ¬  𝑦  =  𝑛  →  if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 59 | 58 | sseq2d | ⊢ ( ¬  𝑦  =  𝑛  →  ( ( ℎ ‘ 𝑦 )  ⊆  if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) )  ↔  ( ℎ ‘ 𝑦 )  ⊆  ∪  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 60 | 57 59 | syl5ibrcom | ⊢ ( ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  →  ( ¬  𝑦  =  𝑛  →  ( ℎ ‘ 𝑦 )  ⊆  if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 61 |  | ssid | ⊢ ( ℎ ‘ 𝑦 )  ⊆  ( ℎ ‘ 𝑦 ) | 
						
							| 62 |  | iftrue | ⊢ ( 𝑦  =  𝑛  →  if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) )  =  ( ℎ ‘ 𝑛 ) ) | 
						
							| 63 | 62 30 | eqtr4d | ⊢ ( 𝑦  =  𝑛  →  if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) )  =  ( ℎ ‘ 𝑦 ) ) | 
						
							| 64 | 61 63 | sseqtrrid | ⊢ ( 𝑦  =  𝑛  →  ( ℎ ‘ 𝑦 )  ⊆  if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 65 | 60 64 | pm2.61d2 | ⊢ ( ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  →  ( ℎ ‘ 𝑦 )  ⊆  if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 66 | 65 | ralrimivw | ⊢ ( ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  →  ∀ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ℎ ‘ 𝑦 )  ⊆  if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 67 |  | ssiin | ⊢ ( ( ℎ ‘ 𝑦 )  ⊆  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) )  ↔  ∀ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ℎ ‘ 𝑦 )  ⊆  if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 68 | 66 67 | sylibr | ⊢ ( ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  →  ( ℎ ‘ 𝑦 )  ⊆  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 69 | 68 | adantl | ⊢ ( ( 𝑦  ∈  ( 𝐴  ∩  𝑚 )  ∧  ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) )  →  ( ℎ ‘ 𝑦 )  ⊆  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 70 | 62 | equcoms | ⊢ ( 𝑛  =  𝑦  →  if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) )  =  ( ℎ ‘ 𝑛 ) ) | 
						
							| 71 |  | fveq2 | ⊢ ( 𝑛  =  𝑦  →  ( ℎ ‘ 𝑛 )  =  ( ℎ ‘ 𝑦 ) ) | 
						
							| 72 | 70 71 | eqtrd | ⊢ ( 𝑛  =  𝑦  →  if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) )  =  ( ℎ ‘ 𝑦 ) ) | 
						
							| 73 | 72 | sseq1d | ⊢ ( 𝑛  =  𝑦  →  ( if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) )  ⊆  ( ℎ ‘ 𝑦 )  ↔  ( ℎ ‘ 𝑦 )  ⊆  ( ℎ ‘ 𝑦 ) ) ) | 
						
							| 74 | 73 | rspcev | ⊢ ( ( 𝑦  ∈  ( 𝐴  ∩  𝑚 )  ∧  ( ℎ ‘ 𝑦 )  ⊆  ( ℎ ‘ 𝑦 ) )  →  ∃ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) )  ⊆  ( ℎ ‘ 𝑦 ) ) | 
						
							| 75 | 61 74 | mpan2 | ⊢ ( 𝑦  ∈  ( 𝐴  ∩  𝑚 )  →  ∃ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) )  ⊆  ( ℎ ‘ 𝑦 ) ) | 
						
							| 76 |  | iinss | ⊢ ( ∃ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) )  ⊆  ( ℎ ‘ 𝑦 )  →  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) )  ⊆  ( ℎ ‘ 𝑦 ) ) | 
						
							| 77 | 75 76 | syl | ⊢ ( 𝑦  ∈  ( 𝐴  ∩  𝑚 )  →  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) )  ⊆  ( ℎ ‘ 𝑦 ) ) | 
						
							| 78 | 77 | adantr | ⊢ ( ( 𝑦  ∈  ( 𝐴  ∩  𝑚 )  ∧  ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) )  →  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) )  ⊆  ( ℎ ‘ 𝑦 ) ) | 
						
							| 79 | 69 78 | eqssd | ⊢ ( ( 𝑦  ∈  ( 𝐴  ∩  𝑚 )  ∧  ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) )  →  ( ℎ ‘ 𝑦 )  =  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 80 | 79 | ralimiaa | ⊢ ( ∀ 𝑦  ∈  ( 𝐴  ∩  𝑚 ) ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  →  ∀ 𝑦  ∈  ( 𝐴  ∩  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 81 | 54 56 80 | 3syl | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝐴  ∩  𝑚 )  ≠  ∅ )  →  ∀ 𝑦  ∈  ( 𝐴  ∩  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 82 |  | eldifn | ⊢ ( 𝑦  ∈  ( 𝐴  ∖  𝑚 )  →  ¬  𝑦  ∈  𝑚 ) | 
						
							| 83 | 82 | ad2antlr | ⊢ ( ( ( ( 𝐴  ∩  𝑚 )  ≠  ∅  ∧  𝑦  ∈  ( 𝐴  ∖  𝑚 ) )  ∧  𝑛  ∈  ( 𝐴  ∩  𝑚 ) )  →  ¬  𝑦  ∈  𝑚 ) | 
						
							| 84 |  | inss2 | ⊢ ( 𝐴  ∩  𝑚 )  ⊆  𝑚 | 
						
							| 85 |  | simpr | ⊢ ( ( ( ( 𝐴  ∩  𝑚 )  ≠  ∅  ∧  𝑦  ∈  ( 𝐴  ∖  𝑚 ) )  ∧  𝑛  ∈  ( 𝐴  ∩  𝑚 ) )  →  𝑛  ∈  ( 𝐴  ∩  𝑚 ) ) | 
						
							| 86 | 84 85 | sselid | ⊢ ( ( ( ( 𝐴  ∩  𝑚 )  ≠  ∅  ∧  𝑦  ∈  ( 𝐴  ∖  𝑚 ) )  ∧  𝑛  ∈  ( 𝐴  ∩  𝑚 ) )  →  𝑛  ∈  𝑚 ) | 
						
							| 87 |  | eleq1 | ⊢ ( 𝑦  =  𝑛  →  ( 𝑦  ∈  𝑚  ↔  𝑛  ∈  𝑚 ) ) | 
						
							| 88 | 86 87 | syl5ibrcom | ⊢ ( ( ( ( 𝐴  ∩  𝑚 )  ≠  ∅  ∧  𝑦  ∈  ( 𝐴  ∖  𝑚 ) )  ∧  𝑛  ∈  ( 𝐴  ∩  𝑚 ) )  →  ( 𝑦  =  𝑛  →  𝑦  ∈  𝑚 ) ) | 
						
							| 89 | 83 88 | mtod | ⊢ ( ( ( ( 𝐴  ∩  𝑚 )  ≠  ∅  ∧  𝑦  ∈  ( 𝐴  ∖  𝑚 ) )  ∧  𝑛  ∈  ( 𝐴  ∩  𝑚 ) )  →  ¬  𝑦  =  𝑛 ) | 
						
							| 90 | 89 58 | syl | ⊢ ( ( ( ( 𝐴  ∩  𝑚 )  ≠  ∅  ∧  𝑦  ∈  ( 𝐴  ∖  𝑚 ) )  ∧  𝑛  ∈  ( 𝐴  ∩  𝑚 ) )  →  if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 91 | 90 | iineq2dv | ⊢ ( ( ( 𝐴  ∩  𝑚 )  ≠  ∅  ∧  𝑦  ∈  ( 𝐴  ∖  𝑚 ) )  →  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) )  =  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) ∪  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 92 |  | iinconst | ⊢ ( ( 𝐴  ∩  𝑚 )  ≠  ∅  →  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) ∪  ( 𝐹 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 93 | 92 | adantr | ⊢ ( ( ( 𝐴  ∩  𝑚 )  ≠  ∅  ∧  𝑦  ∈  ( 𝐴  ∖  𝑚 ) )  →  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) ∪  ( 𝐹 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 94 | 91 93 | eqtr2d | ⊢ ( ( ( 𝐴  ∩  𝑚 )  ≠  ∅  ∧  𝑦  ∈  ( 𝐴  ∖  𝑚 ) )  →  ∪  ( 𝐹 ‘ 𝑦 )  =  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 95 |  | eqeq1 | ⊢ ( ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 )  →  ( ( ℎ ‘ 𝑦 )  =  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) )  ↔  ∪  ( 𝐹 ‘ 𝑦 )  =  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 96 | 94 95 | syl5ibrcom | ⊢ ( ( ( 𝐴  ∩  𝑚 )  ≠  ∅  ∧  𝑦  ∈  ( 𝐴  ∖  𝑚 ) )  →  ( ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 )  →  ( ℎ ‘ 𝑦 )  =  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 97 | 96 | ralimdva | ⊢ ( ( 𝐴  ∩  𝑚 )  ≠  ∅  →  ( ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 )  →  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 98 | 5 97 | mpan9 | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝐴  ∩  𝑚 )  ≠  ∅ )  →  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 99 |  | inundif | ⊢ ( ( 𝐴  ∩  𝑚 )  ∪  ( 𝐴  ∖  𝑚 ) )  =  𝐴 | 
						
							| 100 | 99 | raleqi | ⊢ ( ∀ 𝑦  ∈  ( ( 𝐴  ∩  𝑚 )  ∪  ( 𝐴  ∖  𝑚 ) ) ( ℎ ‘ 𝑦 )  =  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) )  ↔  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  =  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 101 |  | ralunb | ⊢ ( ∀ 𝑦  ∈  ( ( 𝐴  ∩  𝑚 )  ∪  ( 𝐴  ∖  𝑚 ) ) ( ℎ ‘ 𝑦 )  =  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) )  ↔  ( ∀ 𝑦  ∈  ( 𝐴  ∩  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 102 | 100 101 | bitr3i | ⊢ ( ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  =  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) )  ↔  ( ∀ 𝑦  ∈  ( 𝐴  ∩  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 103 | 81 98 102 | sylanbrc | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝐴  ∩  𝑚 )  ≠  ∅ )  →  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  =  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 104 |  | ixpeq2 | ⊢ ( ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  =  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) )  →  X 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  =  X 𝑦  ∈  𝐴 ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 105 | 103 104 | syl | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝐴  ∩  𝑚 )  ≠  ∅ )  →  X 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  =  X 𝑦  ∈  𝐴 ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 106 |  | ixpiin | ⊢ ( ( 𝐴  ∩  𝑚 )  ≠  ∅  →  X 𝑦  ∈  𝐴 ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) )  =  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) X 𝑦  ∈  𝐴 if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 107 | 106 | adantl | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝐴  ∩  𝑚 )  ≠  ∅ )  →  X 𝑦  ∈  𝐴 ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) )  =  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) X 𝑦  ∈  𝐴 if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 108 | 105 107 | eqtrd | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝐴  ∩  𝑚 )  ≠  ∅ )  →  X 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  =  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) X 𝑦  ∈  𝐴 if ( 𝑦  =  𝑛 ,  ( ℎ ‘ 𝑛 ) ,  ∪  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 109 | 39 53 108 | 3eqtr4rd | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝐴  ∩  𝑚 )  ≠  ∅ )  →  X 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  =  ( 𝑋  ∩  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) ) ) | 
						
							| 110 | 25 109 | pm2.61dane | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  →  X 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  =  ( 𝑋  ∩  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) ) ) | 
						
							| 111 |  | ixpexg | ⊢ ( ∀ 𝑛  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑛 )  ∈  V  →  X 𝑛  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑛 )  ∈  V ) | 
						
							| 112 |  | fvex | ⊢ ( 𝐹 ‘ 𝑛 )  ∈  V | 
						
							| 113 | 112 | uniex | ⊢ ∪  ( 𝐹 ‘ 𝑛 )  ∈  V | 
						
							| 114 | 113 | a1i | ⊢ ( 𝑛  ∈  𝐴  →  ∪  ( 𝐹 ‘ 𝑛 )  ∈  V ) | 
						
							| 115 | 111 114 | mprg | ⊢ X 𝑛  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑛 )  ∈  V | 
						
							| 116 | 2 115 | eqeltri | ⊢ 𝑋  ∈  V | 
						
							| 117 | 116 | mptex | ⊢ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  ∈  V | 
						
							| 118 | 117 | cnvex | ⊢ ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  ∈  V | 
						
							| 119 | 118 | imaex | ⊢ ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) )  ∈  V | 
						
							| 120 | 119 | dfiin2 | ⊢ ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) )  =  ∩  { 𝑧  ∣  ∃ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) 𝑧  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) } | 
						
							| 121 |  | inteq | ⊢ ( { 𝑧  ∣  ∃ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) 𝑧  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) }  =  ∅  →  ∩  { 𝑧  ∣  ∃ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) 𝑧  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) }  =  ∩  ∅ ) | 
						
							| 122 | 120 121 | eqtrid | ⊢ ( { 𝑧  ∣  ∃ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) 𝑧  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) }  =  ∅  →  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) )  =  ∩  ∅ ) | 
						
							| 123 |  | int0 | ⊢ ∩  ∅  =  V | 
						
							| 124 | 122 123 | eqtrdi | ⊢ ( { 𝑧  ∣  ∃ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) 𝑧  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) }  =  ∅  →  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) )  =  V ) | 
						
							| 125 | 124 | ineq2d | ⊢ ( { 𝑧  ∣  ∃ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) 𝑧  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) }  =  ∅  →  ( 𝑋  ∩  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) )  =  ( 𝑋  ∩  V ) ) | 
						
							| 126 |  | inv1 | ⊢ ( 𝑋  ∩  V )  =  𝑋 | 
						
							| 127 | 125 126 | eqtrdi | ⊢ ( { 𝑧  ∣  ∃ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) 𝑧  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) }  =  ∅  →  ( 𝑋  ∩  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) )  =  𝑋 ) | 
						
							| 128 | 127 | adantl | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  { 𝑧  ∣  ∃ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) 𝑧  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) }  =  ∅ )  →  ( 𝑋  ∩  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) )  =  𝑋 ) | 
						
							| 129 |  | snex | ⊢ { 𝑋 }  ∈  V | 
						
							| 130 | 1 | ptbas | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  𝐵  ∈  TopBases ) | 
						
							| 131 | 1 2 | ptpjpre2 | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( 𝑘  ∈  𝐴  ∧  𝑢  ∈  ( 𝐹 ‘ 𝑘 ) ) )  →  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  ∈  𝐵 ) | 
						
							| 132 | 131 | ralrimivva | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  ∀ 𝑘  ∈  𝐴 ∀ 𝑢  ∈  ( 𝐹 ‘ 𝑘 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  ∈  𝐵 ) | 
						
							| 133 |  | eqid | ⊢ ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) )  =  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) | 
						
							| 134 | 133 | fmpox | ⊢ ( ∀ 𝑘  ∈  𝐴 ∀ 𝑢  ∈  ( 𝐹 ‘ 𝑘 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  ∈  𝐵  ↔  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) : ∪  𝑘  ∈  𝐴 ( { 𝑘 }  ×  ( 𝐹 ‘ 𝑘 ) ) ⟶ 𝐵 ) | 
						
							| 135 | 132 134 | sylib | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) : ∪  𝑘  ∈  𝐴 ( { 𝑘 }  ×  ( 𝐹 ‘ 𝑘 ) ) ⟶ 𝐵 ) | 
						
							| 136 | 135 | frnd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) )  ⊆  𝐵 ) | 
						
							| 137 | 130 136 | ssexd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) )  ∈  V ) | 
						
							| 138 |  | unexg | ⊢ ( ( { 𝑋 }  ∈  V  ∧  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) )  ∈  V )  →  ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  ∈  V ) | 
						
							| 139 | 129 137 138 | sylancr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  ∈  V ) | 
						
							| 140 |  | ssfii | ⊢ ( ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  ∈  V  →  ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  ⊆  ( fi ‘ ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) ) | 
						
							| 141 | 139 140 | syl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  ⊆  ( fi ‘ ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) ) | 
						
							| 142 | 141 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  →  ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  ⊆  ( fi ‘ ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) ) | 
						
							| 143 |  | ssun1 | ⊢ { 𝑋 }  ⊆  ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) | 
						
							| 144 | 116 | snss | ⊢ ( 𝑋  ∈  ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  ↔  { 𝑋 }  ⊆  ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) | 
						
							| 145 | 143 144 | mpbir | ⊢ 𝑋  ∈  ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) | 
						
							| 146 | 145 | a1i | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  →  𝑋  ∈  ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) | 
						
							| 147 | 142 146 | sseldd | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  →  𝑋  ∈  ( fi ‘ ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) ) | 
						
							| 148 | 147 | adantr | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  { 𝑧  ∣  ∃ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) 𝑧  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) }  =  ∅ )  →  𝑋  ∈  ( fi ‘ ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) ) | 
						
							| 149 | 128 148 | eqeltrd | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  { 𝑧  ∣  ∃ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) 𝑧  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) }  =  ∅ )  →  ( 𝑋  ∩  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) )  ∈  ( fi ‘ ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) ) | 
						
							| 150 | 139 | ad3antrrr | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  { 𝑧  ∣  ∃ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) 𝑧  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) }  ≠  ∅ )  →  ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  ∈  V ) | 
						
							| 151 |  | nfv | ⊢ Ⅎ 𝑛 ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 152 |  | nfcv | ⊢ Ⅎ 𝑛 𝐴 | 
						
							| 153 |  | nfcv | ⊢ Ⅎ 𝑛 ( 𝐹 ‘ 𝑘 ) | 
						
							| 154 |  | nfixp1 | ⊢ Ⅎ 𝑛 X 𝑛  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑛 ) | 
						
							| 155 | 2 154 | nfcxfr | ⊢ Ⅎ 𝑛 𝑋 | 
						
							| 156 |  | nfcv | ⊢ Ⅎ 𝑛 ( 𝑤 ‘ 𝑘 ) | 
						
							| 157 | 155 156 | nfmpt | ⊢ Ⅎ 𝑛 ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) ) | 
						
							| 158 | 157 | nfcnv | ⊢ Ⅎ 𝑛 ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) ) | 
						
							| 159 |  | nfcv | ⊢ Ⅎ 𝑛 𝑢 | 
						
							| 160 | 158 159 | nfima | ⊢ Ⅎ 𝑛 ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) | 
						
							| 161 | 152 153 160 | nfmpo | ⊢ Ⅎ 𝑛 ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) | 
						
							| 162 | 161 | nfrn | ⊢ Ⅎ 𝑛 ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) | 
						
							| 163 | 162 | nfcri | ⊢ Ⅎ 𝑛 𝑧  ∈  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) | 
						
							| 164 |  | df-ov | ⊢ ( 𝑛 ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ( ℎ ‘ 𝑛 ) )  =  ( ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ‘ 〈 𝑛 ,  ( ℎ ‘ 𝑛 ) 〉 ) | 
						
							| 165 | 119 | a1i | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  𝑛  ∈  ( 𝐴  ∩  𝑚 ) )  →  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) )  ∈  V ) | 
						
							| 166 |  | fveq2 | ⊢ ( 𝑘  =  𝑛  →  ( 𝑤 ‘ 𝑘 )  =  ( 𝑤 ‘ 𝑛 ) ) | 
						
							| 167 | 166 | mpteq2dv | ⊢ ( 𝑘  =  𝑛  →  ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  =  ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) ) ) | 
						
							| 168 | 167 | cnveqd | ⊢ ( 𝑘  =  𝑛  →  ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  =  ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) ) ) | 
						
							| 169 | 168 | imaeq1d | ⊢ ( 𝑘  =  𝑛  →  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  𝑢 ) ) | 
						
							| 170 |  | imaeq2 | ⊢ ( 𝑢  =  ( ℎ ‘ 𝑛 )  →  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  𝑢 )  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) ) | 
						
							| 171 | 169 170 | sylan9eq | ⊢ ( ( 𝑘  =  𝑛  ∧  𝑢  =  ( ℎ ‘ 𝑛 ) )  →  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) ) | 
						
							| 172 |  | fveq2 | ⊢ ( 𝑘  =  𝑛  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 173 | 171 172 133 | ovmpox | ⊢ ( ( 𝑛  ∈  𝐴  ∧  ( ℎ ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 )  ∧  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) )  ∈  V )  →  ( 𝑛 ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ( ℎ ‘ 𝑛 ) )  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) ) | 
						
							| 174 | 29 35 165 173 | syl3anc | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  𝑛  ∈  ( 𝐴  ∩  𝑚 ) )  →  ( 𝑛 ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ( ℎ ‘ 𝑛 ) )  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) ) | 
						
							| 175 | 164 174 | eqtr3id | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  𝑛  ∈  ( 𝐴  ∩  𝑚 ) )  →  ( ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ‘ 〈 𝑛 ,  ( ℎ ‘ 𝑛 ) 〉 )  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) ) | 
						
							| 176 | 135 | ad3antrrr | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  𝑛  ∈  ( 𝐴  ∩  𝑚 ) )  →  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) : ∪  𝑘  ∈  𝐴 ( { 𝑘 }  ×  ( 𝐹 ‘ 𝑘 ) ) ⟶ 𝐵 ) | 
						
							| 177 | 176 | ffnd | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  𝑛  ∈  ( 𝐴  ∩  𝑚 ) )  →  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) )  Fn  ∪  𝑘  ∈  𝐴 ( { 𝑘 }  ×  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 178 |  | opeliunxp | ⊢ ( 〈 𝑛 ,  ( ℎ ‘ 𝑛 ) 〉  ∈  ∪  𝑛  ∈  𝐴 ( { 𝑛 }  ×  ( 𝐹 ‘ 𝑛 ) )  ↔  ( 𝑛  ∈  𝐴  ∧  ( ℎ ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 179 | 29 35 178 | sylanbrc | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  𝑛  ∈  ( 𝐴  ∩  𝑚 ) )  →  〈 𝑛 ,  ( ℎ ‘ 𝑛 ) 〉  ∈  ∪  𝑛  ∈  𝐴 ( { 𝑛 }  ×  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 180 |  | sneq | ⊢ ( 𝑛  =  𝑘  →  { 𝑛 }  =  { 𝑘 } ) | 
						
							| 181 |  | fveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 182 | 180 181 | xpeq12d | ⊢ ( 𝑛  =  𝑘  →  ( { 𝑛 }  ×  ( 𝐹 ‘ 𝑛 ) )  =  ( { 𝑘 }  ×  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 183 | 182 | cbviunv | ⊢ ∪  𝑛  ∈  𝐴 ( { 𝑛 }  ×  ( 𝐹 ‘ 𝑛 ) )  =  ∪  𝑘  ∈  𝐴 ( { 𝑘 }  ×  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 184 | 179 183 | eleqtrdi | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  𝑛  ∈  ( 𝐴  ∩  𝑚 ) )  →  〈 𝑛 ,  ( ℎ ‘ 𝑛 ) 〉  ∈  ∪  𝑘  ∈  𝐴 ( { 𝑘 }  ×  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 185 |  | fnfvelrn | ⊢ ( ( ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) )  Fn  ∪  𝑘  ∈  𝐴 ( { 𝑘 }  ×  ( 𝐹 ‘ 𝑘 ) )  ∧  〈 𝑛 ,  ( ℎ ‘ 𝑛 ) 〉  ∈  ∪  𝑘  ∈  𝐴 ( { 𝑘 }  ×  ( 𝐹 ‘ 𝑘 ) ) )  →  ( ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ‘ 〈 𝑛 ,  ( ℎ ‘ 𝑛 ) 〉 )  ∈  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) | 
						
							| 186 | 177 184 185 | syl2anc | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  𝑛  ∈  ( 𝐴  ∩  𝑚 ) )  →  ( ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ‘ 〈 𝑛 ,  ( ℎ ‘ 𝑛 ) 〉 )  ∈  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) | 
						
							| 187 | 175 186 | eqeltrrd | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  𝑛  ∈  ( 𝐴  ∩  𝑚 ) )  →  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) )  ∈  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) | 
						
							| 188 |  | eleq1 | ⊢ ( 𝑧  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) )  →  ( 𝑧  ∈  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) )  ↔  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) )  ∈  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) | 
						
							| 189 | 187 188 | syl5ibrcom | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  𝑛  ∈  ( 𝐴  ∩  𝑚 ) )  →  ( 𝑧  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) )  →  𝑧  ∈  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) | 
						
							| 190 | 189 | ex | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  →  ( 𝑛  ∈  ( 𝐴  ∩  𝑚 )  →  ( 𝑧  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) )  →  𝑧  ∈  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) ) | 
						
							| 191 | 151 163 190 | rexlimd | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  →  ( ∃ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) 𝑧  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) )  →  𝑧  ∈  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) | 
						
							| 192 | 191 | abssdv | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  →  { 𝑧  ∣  ∃ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) 𝑧  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) }  ⊆  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) | 
						
							| 193 |  | ssun2 | ⊢ ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) )  ⊆  ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) | 
						
							| 194 | 192 193 | sstrdi | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  →  { 𝑧  ∣  ∃ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) 𝑧  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) }  ⊆  ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) | 
						
							| 195 | 194 | adantr | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  { 𝑧  ∣  ∃ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) 𝑧  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) }  ≠  ∅ )  →  { 𝑧  ∣  ∃ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) 𝑧  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) }  ⊆  ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) | 
						
							| 196 |  | simpr | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  { 𝑧  ∣  ∃ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) 𝑧  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) }  ≠  ∅ )  →  { 𝑧  ∣  ∃ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) 𝑧  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) }  ≠  ∅ ) | 
						
							| 197 |  | simplrl | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  { 𝑧  ∣  ∃ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) 𝑧  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) }  ≠  ∅ )  →  𝑚  ∈  Fin ) | 
						
							| 198 |  | ssfi | ⊢ ( ( 𝑚  ∈  Fin  ∧  ( 𝐴  ∩  𝑚 )  ⊆  𝑚 )  →  ( 𝐴  ∩  𝑚 )  ∈  Fin ) | 
						
							| 199 | 197 84 198 | sylancl | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  { 𝑧  ∣  ∃ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) 𝑧  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) }  ≠  ∅ )  →  ( 𝐴  ∩  𝑚 )  ∈  Fin ) | 
						
							| 200 |  | abrexfi | ⊢ ( ( 𝐴  ∩  𝑚 )  ∈  Fin  →  { 𝑧  ∣  ∃ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) 𝑧  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) }  ∈  Fin ) | 
						
							| 201 | 199 200 | syl | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  { 𝑧  ∣  ∃ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) 𝑧  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) }  ≠  ∅ )  →  { 𝑧  ∣  ∃ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) 𝑧  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) }  ∈  Fin ) | 
						
							| 202 |  | elfir | ⊢ ( ( ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  ∈  V  ∧  ( { 𝑧  ∣  ∃ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) 𝑧  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) }  ⊆  ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  ∧  { 𝑧  ∣  ∃ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) 𝑧  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) }  ≠  ∅  ∧  { 𝑧  ∣  ∃ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) 𝑧  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) }  ∈  Fin ) )  →  ∩  { 𝑧  ∣  ∃ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) 𝑧  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) }  ∈  ( fi ‘ ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) ) | 
						
							| 203 | 150 195 196 201 202 | syl13anc | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  { 𝑧  ∣  ∃ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) 𝑧  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) }  ≠  ∅ )  →  ∩  { 𝑧  ∣  ∃ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) 𝑧  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) }  ∈  ( fi ‘ ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) ) | 
						
							| 204 | 120 203 | eqeltrid | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  { 𝑧  ∣  ∃ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) 𝑧  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) }  ≠  ∅ )  →  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) )  ∈  ( fi ‘ ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) ) | 
						
							| 205 |  | elssuni | ⊢ ( ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) )  ∈  ( fi ‘ ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) )  →  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) )  ⊆  ∪  ( fi ‘ ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) ) | 
						
							| 206 | 204 205 | syl | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  { 𝑧  ∣  ∃ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) 𝑧  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) }  ≠  ∅ )  →  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) )  ⊆  ∪  ( fi ‘ ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) ) | 
						
							| 207 |  | fiuni | ⊢ ( ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  ∈  V  →  ∪  ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  =  ∪  ( fi ‘ ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) ) | 
						
							| 208 | 139 207 | syl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  ∪  ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  =  ∪  ( fi ‘ ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) ) | 
						
							| 209 | 116 | pwid | ⊢ 𝑋  ∈  𝒫  𝑋 | 
						
							| 210 | 209 | a1i | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  𝑋  ∈  𝒫  𝑋 ) | 
						
							| 211 | 210 | snssd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  { 𝑋 }  ⊆  𝒫  𝑋 ) | 
						
							| 212 | 1 | ptuni2 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  X 𝑛  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑛 )  =  ∪  𝐵 ) | 
						
							| 213 | 2 212 | eqtrid | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  𝑋  =  ∪  𝐵 ) | 
						
							| 214 |  | eqimss2 | ⊢ ( 𝑋  =  ∪  𝐵  →  ∪  𝐵  ⊆  𝑋 ) | 
						
							| 215 | 213 214 | syl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  ∪  𝐵  ⊆  𝑋 ) | 
						
							| 216 |  | sspwuni | ⊢ ( 𝐵  ⊆  𝒫  𝑋  ↔  ∪  𝐵  ⊆  𝑋 ) | 
						
							| 217 | 215 216 | sylibr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  𝐵  ⊆  𝒫  𝑋 ) | 
						
							| 218 | 136 217 | sstrd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) )  ⊆  𝒫  𝑋 ) | 
						
							| 219 | 211 218 | unssd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  ⊆  𝒫  𝑋 ) | 
						
							| 220 |  | sspwuni | ⊢ ( ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  ⊆  𝒫  𝑋  ↔  ∪  ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  ⊆  𝑋 ) | 
						
							| 221 | 219 220 | sylib | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  ∪  ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  ⊆  𝑋 ) | 
						
							| 222 |  | elssuni | ⊢ ( 𝑋  ∈  ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  →  𝑋  ⊆  ∪  ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) | 
						
							| 223 | 145 222 | mp1i | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  𝑋  ⊆  ∪  ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) | 
						
							| 224 | 221 223 | eqssd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  ∪  ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  =  𝑋 ) | 
						
							| 225 | 208 224 | eqtr3d | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  ∪  ( fi ‘ ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) )  =  𝑋 ) | 
						
							| 226 | 225 | ad3antrrr | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  { 𝑧  ∣  ∃ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) 𝑧  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) }  ≠  ∅ )  →  ∪  ( fi ‘ ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) )  =  𝑋 ) | 
						
							| 227 | 206 226 | sseqtrd | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  { 𝑧  ∣  ∃ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) 𝑧  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) }  ≠  ∅ )  →  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) )  ⊆  𝑋 ) | 
						
							| 228 | 227 52 | sylib | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  { 𝑧  ∣  ∃ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) 𝑧  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) }  ≠  ∅ )  →  ( 𝑋  ∩  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) )  =  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) ) | 
						
							| 229 | 228 204 | eqeltrd | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  { 𝑧  ∣  ∃ 𝑛  ∈  ( 𝐴  ∩  𝑚 ) 𝑧  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) }  ≠  ∅ )  →  ( 𝑋  ∩  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) )  ∈  ( fi ‘ ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) ) | 
						
							| 230 | 149 229 | pm2.61dane | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  →  ( 𝑋  ∩  ∩  𝑛  ∈  ( 𝐴  ∩  𝑚 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑛 ) )  “  ( ℎ ‘ 𝑛 ) ) )  ∈  ( fi ‘ ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) ) | 
						
							| 231 | 110 230 | eqeltrd | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑚  ∈  Fin  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  →  X 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( fi ‘ ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) ) | 
						
							| 232 | 231 | rexlimdvaa | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) )  →  ( ∃ 𝑚  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 )  →  X 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( fi ‘ ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) ) ) | 
						
							| 233 | 232 | impr | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) )  ∧  ∃ 𝑚  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  →  X 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( fi ‘ ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) ) | 
						
							| 234 | 4 233 | sylan2b | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑚  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  →  X 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( fi ‘ ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) ) | 
						
							| 235 |  | eleq1 | ⊢ ( 𝑠  =  X 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  →  ( 𝑠  ∈  ( fi ‘ ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) )  ↔  X 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( fi ‘ ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) ) ) | 
						
							| 236 | 234 235 | syl5ibrcom | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑚  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  →  ( 𝑠  =  X 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  →  𝑠  ∈  ( fi ‘ ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) ) ) | 
						
							| 237 | 236 | expimpd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  ( ( ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑚  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑠  =  X 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 ) )  →  𝑠  ∈  ( fi ‘ ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) ) ) | 
						
							| 238 | 237 | exlimdv | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  ( ∃ ℎ ( ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑚  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑚 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑠  =  X 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 ) )  →  𝑠  ∈  ( fi ‘ ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) ) ) | 
						
							| 239 | 3 238 | biimtrid | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  ( 𝑠  ∈  𝐵  →  𝑠  ∈  ( fi ‘ ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) ) ) | 
						
							| 240 | 239 | ssrdv | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  𝐵  ⊆  ( fi ‘ ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) ) | 
						
							| 241 | 1 | ptbasid | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  X 𝑛  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑛 )  ∈  𝐵 ) | 
						
							| 242 | 2 241 | eqeltrid | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  𝑋  ∈  𝐵 ) | 
						
							| 243 | 242 | snssd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  { 𝑋 }  ⊆  𝐵 ) | 
						
							| 244 | 243 136 | unssd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  ⊆  𝐵 ) | 
						
							| 245 |  | fiss | ⊢ ( ( 𝐵  ∈  TopBases  ∧  ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  ⊆  𝐵 )  →  ( fi ‘ ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) )  ⊆  ( fi ‘ 𝐵 ) ) | 
						
							| 246 | 130 244 245 | syl2anc | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  ( fi ‘ ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) )  ⊆  ( fi ‘ 𝐵 ) ) | 
						
							| 247 | 1 | ptbasin2 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  ( fi ‘ 𝐵 )  =  𝐵 ) | 
						
							| 248 | 246 247 | sseqtrd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  ( fi ‘ ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) )  ⊆  𝐵 ) | 
						
							| 249 | 240 248 | eqssd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  𝐵  =  ( fi ‘ ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) ) |