Step |
Hyp |
Ref |
Expression |
1 |
|
ptbas.1 |
⊢ 𝐵 = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } |
2 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → 𝐴 ∈ 𝑉 ) |
3 |
|
0fin |
⊢ ∅ ∈ Fin |
4 |
3
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ∅ ∈ Fin ) |
5 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝐴 ⟶ Top ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ Top ) |
6 |
5
|
adantll |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ Top ) |
7 |
|
eqid |
⊢ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) |
8 |
7
|
topopn |
⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ Top → ∪ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ) |
9 |
6 8
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ 𝑘 ∈ 𝐴 ) → ∪ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ) |
10 |
|
eqidd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ 𝑘 ∈ ( 𝐴 ∖ ∅ ) ) → ∪ ( 𝐹 ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) ) |
11 |
1 2 4 9 10
|
elptr2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) |