Metamath Proof Explorer


Theorem ptbasid

Description: The base set of the product topology is a basic open set. (Contributed by Mario Carneiro, 3-Feb-2015)

Ref Expression
Hypothesis ptbas.1 𝐵 = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑥 = X 𝑦𝐴 ( 𝑔𝑦 ) ) }
Assertion ptbasid ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → X 𝑘𝐴 ( 𝐹𝑘 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 ptbas.1 𝐵 = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑥 = X 𝑦𝐴 ( 𝑔𝑦 ) ) }
2 simpl ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → 𝐴𝑉 )
3 0fin ∅ ∈ Fin
4 3 a1i ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → ∅ ∈ Fin )
5 ffvelrn ( ( 𝐹 : 𝐴 ⟶ Top ∧ 𝑘𝐴 ) → ( 𝐹𝑘 ) ∈ Top )
6 5 adantll ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ 𝑘𝐴 ) → ( 𝐹𝑘 ) ∈ Top )
7 eqid ( 𝐹𝑘 ) = ( 𝐹𝑘 )
8 7 topopn ( ( 𝐹𝑘 ) ∈ Top → ( 𝐹𝑘 ) ∈ ( 𝐹𝑘 ) )
9 6 8 syl ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ 𝑘𝐴 ) → ( 𝐹𝑘 ) ∈ ( 𝐹𝑘 ) )
10 eqidd ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ 𝑘 ∈ ( 𝐴 ∖ ∅ ) ) → ( 𝐹𝑘 ) = ( 𝐹𝑘 ) )
11 1 2 4 9 10 elptr2 ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → X 𝑘𝐴 ( 𝐹𝑘 ) ∈ 𝐵 )