| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ptbas.1 | ⊢ 𝐵  =  { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } | 
						
							| 2 | 1 | ptbasin | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵 ) )  →  ( 𝑢  ∩  𝑣 )  ∈  𝐵 ) | 
						
							| 3 | 2 | ralrimivva | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  ∀ 𝑢  ∈  𝐵 ∀ 𝑣  ∈  𝐵 ( 𝑢  ∩  𝑣 )  ∈  𝐵 ) | 
						
							| 4 | 1 | ptuni2 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  =  ∪  𝐵 ) | 
						
							| 5 |  | ixpexg | ⊢ ( ∀ 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  ∈  V  →  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  ∈  V ) | 
						
							| 6 |  | fvex | ⊢ ( 𝐹 ‘ 𝑘 )  ∈  V | 
						
							| 7 | 6 | uniex | ⊢ ∪  ( 𝐹 ‘ 𝑘 )  ∈  V | 
						
							| 8 | 7 | a1i | ⊢ ( 𝑘  ∈  𝐴  →  ∪  ( 𝐹 ‘ 𝑘 )  ∈  V ) | 
						
							| 9 | 5 8 | mprg | ⊢ X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  ∈  V | 
						
							| 10 | 4 9 | eqeltrrdi | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  ∪  𝐵  ∈  V ) | 
						
							| 11 |  | uniexb | ⊢ ( 𝐵  ∈  V  ↔  ∪  𝐵  ∈  V ) | 
						
							| 12 | 10 11 | sylibr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  𝐵  ∈  V ) | 
						
							| 13 |  | inficl | ⊢ ( 𝐵  ∈  V  →  ( ∀ 𝑢  ∈  𝐵 ∀ 𝑣  ∈  𝐵 ( 𝑢  ∩  𝑣 )  ∈  𝐵  ↔  ( fi ‘ 𝐵 )  =  𝐵 ) ) | 
						
							| 14 | 12 13 | syl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  ( ∀ 𝑢  ∈  𝐵 ∀ 𝑣  ∈  𝐵 ( 𝑢  ∩  𝑣 )  ∈  𝐵  ↔  ( fi ‘ 𝐵 )  =  𝐵 ) ) | 
						
							| 15 | 3 14 | mpbid | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  ( fi ‘ 𝐵 )  =  𝐵 ) |