Step |
Hyp |
Ref |
Expression |
1 |
|
ptbas.1 |
⊢ 𝐵 = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } |
2 |
1
|
ptbasin |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → ( 𝑢 ∩ 𝑣 ) ∈ 𝐵 ) |
3 |
2
|
ralrimivva |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ∩ 𝑣 ) ∈ 𝐵 ) |
4 |
1
|
ptuni2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝐵 ) |
5 |
|
ixpexg |
⊢ ( ∀ 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ∈ V → X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ∈ V ) |
6 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑘 ) ∈ V |
7 |
6
|
uniex |
⊢ ∪ ( 𝐹 ‘ 𝑘 ) ∈ V |
8 |
7
|
a1i |
⊢ ( 𝑘 ∈ 𝐴 → ∪ ( 𝐹 ‘ 𝑘 ) ∈ V ) |
9 |
5 8
|
mprg |
⊢ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ∈ V |
10 |
4 9
|
eqeltrrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ∪ 𝐵 ∈ V ) |
11 |
|
uniexb |
⊢ ( 𝐵 ∈ V ↔ ∪ 𝐵 ∈ V ) |
12 |
10 11
|
sylibr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → 𝐵 ∈ V ) |
13 |
|
inficl |
⊢ ( 𝐵 ∈ V → ( ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ∩ 𝑣 ) ∈ 𝐵 ↔ ( fi ‘ 𝐵 ) = 𝐵 ) ) |
14 |
12 13
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ( ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ∩ 𝑣 ) ∈ 𝐵 ↔ ( fi ‘ 𝐵 ) = 𝐵 ) ) |
15 |
3 14
|
mpbid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ( fi ‘ 𝐵 ) = 𝐵 ) |