Metamath Proof Explorer


Theorem ptbasin2

Description: The basis for a product topology is closed under intersections. (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Hypothesis ptbas.1 𝐵 = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑥 = X 𝑦𝐴 ( 𝑔𝑦 ) ) }
Assertion ptbasin2 ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → ( fi ‘ 𝐵 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 ptbas.1 𝐵 = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑥 = X 𝑦𝐴 ( 𝑔𝑦 ) ) }
2 1 ptbasin ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝑢𝐵𝑣𝐵 ) ) → ( 𝑢𝑣 ) ∈ 𝐵 )
3 2 ralrimivva ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → ∀ 𝑢𝐵𝑣𝐵 ( 𝑢𝑣 ) ∈ 𝐵 )
4 1 ptuni2 ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → X 𝑘𝐴 ( 𝐹𝑘 ) = 𝐵 )
5 ixpexg ( ∀ 𝑘𝐴 ( 𝐹𝑘 ) ∈ V → X 𝑘𝐴 ( 𝐹𝑘 ) ∈ V )
6 fvex ( 𝐹𝑘 ) ∈ V
7 6 uniex ( 𝐹𝑘 ) ∈ V
8 7 a1i ( 𝑘𝐴 ( 𝐹𝑘 ) ∈ V )
9 5 8 mprg X 𝑘𝐴 ( 𝐹𝑘 ) ∈ V
10 4 9 eqeltrrdi ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → 𝐵 ∈ V )
11 uniexb ( 𝐵 ∈ V ↔ 𝐵 ∈ V )
12 10 11 sylibr ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → 𝐵 ∈ V )
13 inficl ( 𝐵 ∈ V → ( ∀ 𝑢𝐵𝑣𝐵 ( 𝑢𝑣 ) ∈ 𝐵 ↔ ( fi ‘ 𝐵 ) = 𝐵 ) )
14 12 13 syl ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → ( ∀ 𝑢𝐵𝑣𝐵 ( 𝑢𝑣 ) ∈ 𝐵 ↔ ( fi ‘ 𝐵 ) = 𝐵 ) )
15 3 14 mpbid ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → ( fi ‘ 𝐵 ) = 𝐵 )